Lower bounds for sums of powers of low degree univariate polynomials

Pascal Koiran
Joint work with:
Neeraj Kayal, Timothée Pecatte and Chandan Saha

WACT 2015, Saarbrücken
Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family \((f_n)\) of univariate polynomials of degree \(n\) and lower bound on circuit size \(> (\log n)^O(1)\).
Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family \((f_n)\) of univariate polynomials of degree \(n\) and lower bound on circuit size \(> (\log n)^{O(1)}\).
- Our model: representations of the form

\[
f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},
\]

where \(\deg(Q_i) \leq t\). **Wanted**: lower bound on \(s\).
Why univariate polynomials?

• Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family \((f_n)\) of univariate polynomials of degree \(n\) and lower bound on circuit size \(> (\log n)^{O(1)}\).

• Our model: representations of the form

\[
 f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},
\]

where \(\deg(Q_i) \leq t\). **Wanted:** lower bound on \(s\).

• This toy model is easier to analyze but still challenging, even for \(t = 2\) or (!) \(t = 1\).
Why univariate polynomials?

- Open problem 1.4 in survey by Chen, Kayal and Wigderson: Find explicit family \((f_n)\) of univariate polynomials of degree \(n\) and lower bound on circuit size \(\geq (\log n)^{O(1)}\).
- Our model: representations of the form
 \[
 f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},
 \]
 where \(\deg(Q_i) \leq t\). **Wanted:** lower bound on \(s\).
- This toy model is easier to analyze but still challenging, even for \(t = 2\) or (!) \(t = 1\).
- A variation is closely connected to \(\text{VP} \neq \text{VNP}\).
Bounding sparsity(Q_i) instead of degree(Q_i)

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^n} (X + i)$. Probably hard for general arithmetic circuits.
Bounding sparsity(Q_i) instead of degree(Q_i)

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^n} (X + i)$. Probably hard for general arithmetic circuits.

- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
Bounding sparsity(Q_i) instead of degree(Q_i)

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^n} (X + i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
- $(X + 1)^{2^n}$. Seems hard if e_i required to be small.
Bounding sparsity(Q_i) instead of degree(Q_i)

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^n} (X + i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
- $(X + 1)^{2^n}$. Seems hard if e_i required to be small.

If $VP = VNP$, they can be represented with $t = n^{O(\sqrt{n})}$, $s = n^{O(\sqrt{n})}$ and $e_i = O(\sqrt{n})$.
Bounding sparsity(Q_i) instead of degree(Q_i)

Consider the model:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},$$

where Q_i has at most t monomials. Candidate hard polynomials:

- $\prod_{i=1}^{2^n} (X + i)$. Probably hard for general arithmetic circuits.
- $\sum_{i=0}^{2^n-1} 2^{2i(2^n-i-1)} X^i$. Satisfies Kurz condition.
- $(X + 1)^{2^n}$. Seems hard if e_i required to be small.

If VP = VNP, they can be represented with $t = n^{O(\sqrt{n})}$, $s = n^{O(\sqrt{n})}$ and $e_i = O(\sqrt{n})$.

- In 2 variables: $\sum_{i=1}^{2^n} X^i Y^{i^2}$ (Newton polygon).
Back to bounded degree

Recall:

\[f(x) = \sum_{i=1}^{s} \alpha_i . Q_i(x)^{e_i}, \]

where \(\text{deg}(Q_i) \leq t \).

• Expected lower bound: \(s = \Omega(d/t) \).
 Applies to “random” \(f \) by counting independent parameters.
Recall:

\[f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i}, \]

where \(\deg(Q_i) \leq t \).

- Expected lower bound: \(s = \Omega(d/t) \).
 Applies to “random” \(f \) by counting independent parameters.

- What we can prove:
 \(s = \Omega(\sqrt{d/t}) \) for some explicit polynomials \(f \).
Upper bounds for bounded degree

Recall:

\[f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i}, \]

where \(\text{deg}(Q_i) \leq t. \)

- \(s = O((d/t)^2) \) for any \(f \) (simple explicit construction).
Upper bounds for bounded degree

Recall:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i},$$

where \(\text{deg}(Q_i) \leq t\).

- \(s = O((d/t)^2)\) for any \(f\) (simple explicit construction).
- \(s = O(d/t)\) for most \(f\)
 - [On the Waring problem for polynomial rings. Fröberg, Ottaviani, Shapiro, 2012]
 - for \(t = 1\): [Polynomial interpolation in several variables. Alexander - Hirschowitz, 1995]
Upper bounds for bounded degree

Recall:

\[f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i}, \]

where \(\text{deg}(Q_i) \leq t \).

- \(s = O((d/t)^2) \) for any \(f \) (simple explicit construction).
- \(s = O(d/t) \) for most \(f \)
 [On the Waring problem for polynomial rings. Fröberg, Ottaviani, Shapiro, 2012]
 for \(t = 1 \): [Polynomial interpolation in several variables. Alexander - Hirschowitz, 1995]
- Worst case rank \(\leq 2 \times (\text{worst case border rank}) \):
 [Blekherman - Teitler, 2014]
 simons.berkeley.edu/talks/grigory-blekherman-2014-11-10
 Hence \(s = O(d/t) \) for any \(f \) (non-constructive).
The method of partial derivatives

To prove that f is hard to compute, we seek a “complexity measure” Γ such that:

- $\Gamma(f)$ is high.
- $\Gamma(g)$ is low if g has small circuit complexity.
The method of partial derivatives

To prove that f is hard to compute, we seek a “complexity measure” Γ such that:

- $\Gamma(f)$ is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

- $\partial f = \text{space spanned by all partial derivatives } \partial^\alpha f / \partial x^\alpha$.
- $\Gamma(f) = \dim(\partial f)$.
The method of partial derivatives

To prove that f is hard to compute, we seek a “complexity measure” Γ such that:

- $\Gamma(f)$ is high.
- $\Gamma(g)$ is low if g has small circuit complexity.

One popular measure for multivariate polynomials:

- $\partial f = \text{space spanned by all partial derivatives } \partial^\alpha f / \partial x^\alpha$.
- $\Gamma(f) = \dim(\partial f)$.

Abject failure for univariate polynomials!

Indeed, $\Gamma(f) = d + 1$ for all f of degree d.
The method of shifted derivatives

- To fix this: consider the shifted derivatives $x^i f^{(j)}(x)$.
- Degree is $\deg(f) + i - j \Rightarrow$ we can expect linear dependencies.
- This is just the “method of shifted partial derivatives” applied to univariate polynomials.
The Wronskian

Definition

The Wronskian $W(f_1, \ldots, f_n)$ is defined by

$$W(f_1, \ldots, f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & \ldots & f_n(x) \\ f'_1(x) & f'_2(x) & \ldots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f^{(n-1)}_1 & f^{(n-1)}_2 & \ldots & f^{(n-1)}_n \end{vmatrix}$$
The Wronskian

Definition

The Wronskian $W(f_1, \ldots, f_n)$ is defined by

$$W(f_1, \ldots, f_n)(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f^{(n-1)}_1 & f^{(n-1)}_2 & \cdots & f^{(n-1)}_n \end{vmatrix}$$

Proposition

For $f_1, \ldots, f_n \in \mathbb{K}(X)$, the functions are linearly dependent if and only if the Wronskian $W(f_1, \ldots, f_n)$ vanishes everywhere.

We also use the Wronskian to bound multiplicities of roots.
Our results

• Hard polynomial: \(\prod_{k=1}^{2t} (x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.
Our results

- Hard polynomial: \(\prod_{k=1}^{2t}(x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.
- Hard polynomial: \(f(x) = \sum_{i=1}^{m}(x - a_i)^d \).
Our results

- Hard polynomial: \(\prod_{k=1}^{2t} (x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.

- Hard polynomial: \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \).

<table>
<thead>
<tr>
<th>\text{deg } Q_i</th>
<th>e_i</th>
<th>m</th>
<th>s</th>
<th>Method</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Wronskian

Shifted derivatives
Our results

- Hard polynomial: \(\prod_{k=1}^{2t} (x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.
- Hard polynomial: \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \).

<table>
<thead>
<tr>
<th>\text{deg } Q_i</th>
<th>e_i</th>
<th>m</th>
<th>s</th>
<th>Method</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d</td>
<td>\frac{d}{2}</td>
<td>\Omega(d)</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Our results

- Hard polynomial: \(\prod_{k=1}^{2t} (x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.

- Hard polynomial: \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \).

<table>
<thead>
<tr>
<th>\text{deg } Q_i</th>
<th>e_i</th>
<th>m</th>
<th>s</th>
<th>Method</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(= d)</td>
<td>(\frac{d}{2})</td>
<td>(\Omega(d))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(\frac{\sqrt{d}}{2})</td>
<td>(\Omega(\sqrt{d}))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Our results

- Hard polynomial: \(\prod_{k=1}^{2t} (x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.
- Hard polynomial: \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \).

<table>
<thead>
<tr>
<th>\text{deg } Q_i</th>
<th>e_i</th>
<th>m</th>
<th>s</th>
<th>Method</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>= d</td>
<td>(\frac{d}{2})</td>
<td>(\Omega(d))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(\frac{\sqrt{d}}{2})</td>
<td>(\Omega(\sqrt{d}))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>(t)</td>
<td></td>
<td>(\frac{2}{3} \sqrt{\frac{d}{t}})</td>
<td>(\Omega\left(\frac{1}{t} \sqrt{\frac{d}{t}}\right))</td>
<td>Wronskian</td>
<td></td>
</tr>
</tbody>
</table>
Our results

- Hard polynomial: $\prod_{k=1}^{2t} (x - a_k)^{d/2t}$.
 Lower bound: $s = \Omega(\sqrt{d/t})$. Method: Wronskian.
- Hard polynomial: $f(x) = \sum_{i=1}^{m} (x - a_i)^d$.

<table>
<thead>
<tr>
<th>deg Q_i</th>
<th>e_i</th>
<th>m</th>
<th>s</th>
<th>Method</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$= d$</td>
<td>$\frac{d}{2}$</td>
<td>$\Omega(d)$</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>$\frac{\sqrt{d}}{2}$</td>
<td>$\Omega\left(\sqrt{d}\right)$</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td>$\frac{2\sqrt{d}}{3}$</td>
<td>$\Omega\left(\frac{1}{t}\sqrt{\frac{d}{t}}\right)$</td>
<td>Wronskian</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>$\leq \frac{d}{t}$</td>
<td>$\frac{\sqrt{2}}{3}$</td>
<td>$\sqrt{\frac{d}{t}}$</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Our results

- Hard polynomial: \(\prod_{k=1}^{2t} (x - a_k)^{d/2t} \).
 Lower bound: \(s = \Omega(\sqrt{d/t}) \). Method: Wronskian.
- Hard polynomial: \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \).

<table>
<thead>
<tr>
<th>deg (Q_i)</th>
<th>(e_i)</th>
<th>(m)</th>
<th>(s)</th>
<th>Method</th>
<th>Optimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>= (d)</td>
<td>(\frac{d}{2})</td>
<td>(\Omega(d))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>(\frac{\sqrt{d}}{2})</td>
<td>(\Omega(\sqrt{d}))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>(t)</td>
<td></td>
<td>(\frac{2}{3} \sqrt{\frac{d}{t}})</td>
<td>(\Omega\left(\frac{1}{t}\sqrt{\frac{d}{t}}\right))</td>
<td>Wronskian</td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>(\leq \frac{d}{t})</td>
<td>(\frac{\sqrt{2}}{3} \sqrt{\frac{d}{t}})</td>
<td>(\Omega\left(\sqrt{\frac{d}{t}}\right))</td>
<td>Wronskian</td>
<td>Yes</td>
</tr>
<tr>
<td>(t)</td>
<td></td>
<td>(\sqrt{\frac{d}{t}})</td>
<td>(\Omega\left(\sqrt{\frac{d}{t}}\right))</td>
<td>Shifted derivatives</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Linear independence of powers of linear forms

For any distinct \(a_i \)'s in \(\mathbb{K} \), the family
\[
S = \{(x - a_1)^d, \ldots, (x - a_{d+1})^d\}
\]
is a basis of \(\mathbb{K}_d[X] \).

Proof.

\[
\text{Wr}(x) = \begin{vmatrix}
(x - a_1)^d & \ldots & (x - a_{d+1})^d \\
 d(x - a_1)^{d-1} & \ldots & d(x - a_{d+1})^{d-1} \\
 \vdots & \ddots & \vdots \\
 d! & \ldots & d!
\end{vmatrix}
\]

For any \(z \in \mathbb{C} \), define \(b_i = z - a_i \) and we have:

\[
\text{Wr}(z) = \begin{vmatrix}
b_1^d & \ldots & b_{d+1}^d \\
 d \cdot b_1^{d-1} & \ldots & d \cdot b_{d+1}^{d-1} \\
 \vdots & \ddots & \vdots \\
 d! & \ldots & d!
\end{vmatrix} = c \cdot \begin{vmatrix}
b_1^d & \ldots & b_{d+1}^d \\
 b_1^{d-1} & \ldots & b_{d+1}^{d-1} \\
 \vdots & \ddots & \vdots \\
 1 & \ldots & 1
\end{vmatrix}
\]

Vandermonde matrix: \(|.| = \prod_{i \neq j} (b_i - b_j) = \prod_{i \neq j} (a_j - a_i) \neq 0 \).
\[
\Rightarrow \text{Wr} \neq 0 \Rightarrow S \text{ is linearly independent.}
\]
Lower bound for $t = 1$

Theorem

For any d, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$, with distinct a_i's and $m = \left\lfloor \frac{d}{2} \right\rfloor$, is optimally hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i \ell_i^d$, with each ℓ_i of degree 1, must satisfy $s \geq \left\lfloor \frac{d}{2} \right\rfloor$.

Proof. For contradiction, assume that $f(x) = \sum_{i=1}^{s} \alpha_i \ell_i^d$ with $s < m$. We obtain the nontrivial linear relation $m \sum_{i=1}^{m} (x - a_i)^d - s \sum_{i=1}^{s} \alpha_i \ell_i^d = 0$ between $m + s$ d-th powers: contradiction.

Stronger bound by Johannes Kepple (Candidatus Scientiarum).
Lower bound for \(t = 1 \)

Theorem

For any \(d \), the polynomial \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \), with distinct \(a_i \)'s and \(m = \left\lfloor \frac{d}{2} \right\rfloor \), is optimally hard in the following sense: any representation of \(f \) of the form \(f = \sum_{i=1}^{s} \alpha_i \ell_i^d \), with each \(\ell_i \) of degree 1, must satisfy \(s \geq \left\lfloor \frac{d}{2} \right\rfloor \).

Proof.

For contradiction, assume that \(f(X) = \sum_{i=1}^{s} \alpha_i \ell_i^d \) with \(s < m \). We obtain the nontrivial linear relation

\[
\sum_{i=1}^{m} (x - a_i)^d - \sum_{i=1}^{s} \alpha_i \ell_i^d = 0
\]

between \(m + s < d \) \(d \)-th powers: contradiction.
Lower bound for $t = 1$

Theorem

For any d, the polynomial $f(x) = \sum_{i=1}^{m}(x - a_i)^d$, with distinct a_i's and $m = \left\lfloor \frac{d}{2} \right\rfloor$, is optimally hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i \ell_i^d$, with each ℓ_i of degree 1, must satisfy $s \geq \left\lfloor \frac{d}{2} \right\rfloor$.

Proof.

For contradiction, assume that $f(X) = \sum_{i=1}^{s} \alpha_i \ell_i^d$ with $s < m$. We obtain the nontrivial linear relation

$$\sum_{i=1}^{m}(x - a_i)^d - \sum_{i=1}^{s} \alpha_i \ell_i^d = 0$$

between $m + s < d$ d-th powers: contradiction.

Stronger bound by Johannes Kepple (*Candidatus Scientiarum*).
Bounding multiplicities with the Wronskian

Let $N_{z_0}(F)$ denote the multiplicity of z_0 as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q_1, \ldots, Q_m be linearly independent polynomials, and $F(z) = \sum_{i=1}^{m} Q_i(z)$. Then for any $z_0 \in K$:

$$N_{z_0}(F) \leq m - 1 + N_{z_0}(W(Q_1, \ldots, Q_m))$$
Bounding multiplicities with the Wronskian

Let $N_{z_0}(F)$ denote the multiplicity of z_0 as a root of F.

Lemma (Voorhoeve and Van Der Poorten, 1975)

Let Q_1, \ldots, Q_m be linearly independent polynomials, and $F(z) = \sum_{i=1}^{m} Q_i(z)$. Then for any $z_0 \in K$:

$$N_{z_0}(F) \leq m - 1 + N_{z_0}(W(Q_1, \ldots, Q_m))$$

Proof.

Note that $W(Q_1, \ldots, Q_m) = W(Q_1, \ldots, Q_{m-1}, F)$. Expand along last column:

$$W(Q_1, \ldots, Q_{m-1}, F) = \sum_{i=0}^{m-1} B_i F^{(i)}$$

and $N_{z_0}(F^{(i)}) \geq N_{z_0}(F) - (m - 1)$.
The Model

Lower bounds: methods and results

The Wronskian

Shifted derivatives

Lower bound for $t = 2$

Theorem

*For any t, d, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$, with distinct a_i's and $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$, is hard in the following sense: any representation of f of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$, with each Q_i of degree ≤ 2, must satisfy:

$$s = \Omega \left(\sqrt{d} \right)$$*
Sketch of the proof

- Remember \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) where \(m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor \),
Sketch of the proof

- Remember $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$.
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with $s < m/2$.
Sketch of the proof

- Remember \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) where \(m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor \).
- For contradiction, assume \(f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i} \) with \(s < m/2 \).
- Pick an \(a_i \) which isn’t a root of any \(Q_j \), wlog \(a_1 \).
Sketch of the proof

- Remember \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) where \(m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor \).
- For contradiction, assume \(f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i} \) with \(s < m/2 \).
- Pick an \(a_i \) which isn’t a root of any \(Q_j \), wlog \(a_1 \).
- Rewrite \((x - a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x) \) with linearly independent \(R_i \) of degree \(\leq 2 \) and \(l \leq s + m - 1 < 3m/2 \).
Sketch of the proof

- Remember $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$.

- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with $s < m/2$.

- Pick an a_i which isn’t a root of any Q_j, wlog a_1.

- Rewrite $(x - a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.

- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_1:

$$d = N_{a_1}((x - a_1)^d) \leq l - 1 + N_{a_1}(W(R_1^{e_1}, \ldots, R_l^l))$$
Sketch of the proof

- Remember $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$.
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with $s < m/2$.
- Pick an a_i which isn’t a root of any Q_j, wlog a_1.
- Rewrite $(x - a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_1:
 $$d = N_{a_1} ((x - a_1)^d) \leq l - 1 + N_{a_1} (W (R_1^{e_1}, \ldots, R_l^{e_l}))$$
- Factor out $R_i^{e_i-(l-1)}$ from each column of the Wronskian.
Sketch of the proof

- Remember $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ where $m = \left\lfloor \frac{\sqrt{d}}{2} \right\rfloor$.
- For contradiction, assume $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with $s < m/2$.
- Pick an a_i which isn’t a root of any Q_j, wlog a_1.
- Rewrite $(x - a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)$ with linearly independent R_i of degree ≤ 2 and $l \leq s + m - 1 < 3m/2$.
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of a_1:

 $$d = N_{a_1} ((x - a_1)^d) \leq l - 1 + N_{a_1} (W (R_1^{e_1}, \ldots, R_l^l))$$

- Factor out $R_i^{e_i-(l-1)}$ from each column of the Wronskian.
- Remaining determinant: degree bounded by $3l/(l - 1)/2$.

Sketch of the proof

- Remember \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) where \(m = \left\lfloor \sqrt{d} \right\rfloor \).
- For contradiction, assume \(f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i} \) with \(s < m/2 \).
- Pick an \(a_i \) which isn’t a root of any \(Q_j \), wlog \(a_1 \).
- Rewrite \((x - a_1)^d = \sum_{i=1}^{l} \alpha_i R_i^{e_i}(x)\) with linearly independent \(R_i \) of degree \(\leq 2 \) and \(l \leq s + m - 1 < 3m/2 \).
- Use Voorhoeve - Van Der Poorten lemma to bound multiplicity of \(a_1 \):
 \[
d = N_{a_1} ((x - a_1)^d) \leq l - 1 + N_{a_1} (W (R_1^{e_1}, \ldots, R_l^{l}))\]
- Factor out \(R_i^{e_i-(l-1)} \) from each column of the Wronskian.
- Remaining determinant: degree bounded by \(3l(l - 1)/2 \).
- Combine to obtain:
 \[
d \leq l - 1 + 3l(l - 1)/2 < 27m^2/8 \leq 27d/32.\]
A closer look

Take for example \(l = 2 \):

\[
W (R_{1}^{e_1}, R_{2}^{e_2}) = \begin{vmatrix}
R_{1}^{e_1} & R_{2}^{e_2} \\
e_1 R_{1}^{e_1-1} R_{1}' & e_2 R_{2}^{e_2-1} R_{2}'
\end{vmatrix} = R_{1}^{e_1-1} R_{2}^{e_2-1} \Delta
\]

where \(\Delta = \begin{vmatrix}
R_{1} & R_{2} \\
e_1 R_{1}' & e_2 R_{2}'
\end{vmatrix} \)

- \(N_{a_1} \left(R_{1}^{e_1-1} \right) = N_{a_1} \left(R_{2}^{e_2-1} \right) = 0. \)
- The entries of \(\Delta \) have low degree (here, at most 2); we bound \(N_{a_1} \left(\Delta \right) \) by the degree of \(\Delta \).
- Possible room for improvement: better bound on \(N_{a_1} \left(\Delta \right) \)?
Shifted derivatives

Definition

Let \(f(x) \in \mathbb{K}[x] \) be a polynomial. The *span of the \(l \)-shifted \(k \)-th order derivatives* of \(f \) is defined as:

\[
\left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} \overset{\text{def}}{=} \mathbb{K}\text{-span} \left\{ x^j \cdot f^{(i)}(x) : i \leq k, j \leq i + l \right\}
\]

This forms a \(\mathbb{K} \)-vector space and we denote its dimension by:

\[
\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k}
\]

This complexity measure is subadditive.
An upper bound for sums of powers

Proposition

For any polynomial \(f \) *of degree* \(d \) *of the form* \(f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i} \) *with* \(\deg Q_i \leq t \) *we have:*

\[
\dim \left\langle x^{\leq i + l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l + kt + 1).
\]
Proposition

For any polynomial f of degree d of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with $\deg Q_i \leq t$ we have:

$$\dim \left\langle x^{\leq i + l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq s \cdot (l + kt + 1).$$

Proof.

- By subadditivity, it’s enough to show that for $f = Q^{e_i}$ with $\deg Q \leq t$, we have $\dim \left\langle x^{\leq i + l} \cdot f^{(i)} \right\rangle_{i \leq k} \leq l + kt + 1$.
An upper bound for sums of powers

Proposition

For any polynomial f of degree d of the form $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with $\deg Q_i \leq t$ we have:

$$\dim \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} \leq s \cdot (l + kt + 1).$$

Proof.

- By subadditivity, it’s enough to show that for $f = Q^{e_i}$ with $\deg Q \leq t$, we have $\dim \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} \leq l + kt + 1$.

- Any $g \in \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is of the form $g = Q^{e_i-k} \cdot R$. Since $\deg g \leq e_i \cdot t + l$ we have $\deg R \leq l + kt$.

Shifted Differential Equations

Definition (SDE)

This is an equation: \[\sum_{i=0}^{k} P_i(x)f^{(i)}(x) = 0 \]

for some polynomials \(P_i \in \mathbb{K}[X] \) with \(\deg P_i \leq i + l \).

\(k \) is called the *order* and \(l \) is called the *shift*.
Shifted Differential Equations

Definition (SDE)

This is an equation:

\[\sum_{i=0}^{k} P_i(x)f^{(i)}(x) = 0 \]

for some polynomials \(P_i \in \mathbb{K}[X] \) with \(\deg P_i \leq i + l \).

\(k \) is called the order and \(l \) is called the shift.

Proposition

If \(f \in \mathbb{K}[X]
doesn't satisfy any SDE of order \(k \) *and shift* \(l \)
then \(\left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k}
is of full dimension, i.e.,

\[
\dim \left\langle x^{\leq i+l} \cdot f^{(i)} \right\rangle_{i \leq k} = \sum_{i=0}^{k} (l + i + 1) = (k + 1)l + k(k + 1)/2.
\]
The key lemma

Lemma

Let \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) where the \(a_i \)'s are distinct and \(m \leq d \).

If \(f \) satisfies a SDE of order \(k \) and shift \(l \) then:

i) \(k \geq m \), or

ii) \(l > \frac{d}{m} - \frac{3m}{2} \)
The key lemma

Lemma

Let $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ where the a_i's are distinct and $m \leq d$.

If f satisfies a SDE of order k and shift l then:

1. $k \geq m$, or
2. $l > \frac{d}{m} - 3m/2$

Proof.

- Transform the SDE into a relation of the form:

 $$-Q_1(x)(x - a_1)^{d-k} = \sum_{i=2}^{m} Q_i(x)(x - a_i)^{d-k}$$

 It is nontrivial if $k < m$.
The key lemma

Lemma

Let \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) where the \(a_i \)'s are distinct and \(m \leq d \).

If \(f \) satisfies a SDE of order \(k \) and shift \(l \) then:

i) \(k \geq m \), or

ii) \(l > \frac{d}{m} - 3m/2 \)

Proof.

- Transform the SDE into a relation of the form:
 \[-Q_1(x)(x - a_1)^{d-k} = \sum_{i=2}^{m} Q_i(x)(x - a_i)^{d-k}\]
 It is nontrivial if \(k < m \).
- Use the Wronskian (again!) to obtain:
 \[d - k \leq m - 2 + (m - 1)(l + k) + \binom{m-1}{2}\]
The lower bound

Theorem

For any $d, t \geq 2$ such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ with distinct a_i's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:

If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\leq t$ then $s = \Omega \left(\sqrt{\frac{d}{t}} \right)$.

The lower bound

Theorem

For any \(d, t \geq 2 \) such that \(t < \frac{d}{4} \), the polynomial \(f(x) = \sum_{i=1}^{m} (x - a_i)^d \) with distinct \(a_i \)'s and \(m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor \) is hard:

If \(f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i} \) with each \(Q_i \) of degree \(\leq t \) then \(s = \Omega \left(\sqrt{\frac{d}{t}} \right) \).

Proof.

- Pick \(k = m - 1 \) and \(l = (d/m) - 3m/2 \): \(\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} \) is full.
The lower bound

Theorem

For any $d, t \geq 2$ such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ with distinct a_i’s and $m = \left\lceil \sqrt{\frac{d}{t}} \right\rceil$ is hard:

If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\leq t$ then $s = \Omega \left(\sqrt{\frac{d}{t}} \right)$.

Proof.

- Pick $k = m - 1$ and $l = (d/m) - 3m/2$: $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is full.
- Hence $\dim \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} = (k + 1)l + k(k + 1)/2 = \Omega(d)$.
The lower bound

Theorem

For any $d, t \geq 2$ such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ with distinct a_i’s and $m = \left\lceil \sqrt{\frac{d}{t}} \right\rceil$ is hard:

If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\leq t$ then $s = \Omega\left(\sqrt{\frac{d}{t}}\right)$.

Proof.

- Pick $k = m - 1$ and $l = (d/m) - 3m/2$: $\langle x^{\leq i+1} \cdot f^{(i)} \rangle_{i \leq k}$ is full.

- Hence $\dim \langle x^{\leq i+1} \cdot f^{(i)} \rangle_{i \leq k} = (k + 1)l + k(k + 1)/2 = \Omega(d)$.

- Upper bound for sums of powers:
 \[\dim \langle x^{\leq i+1} \cdot f^{(i)} \rangle_{i \leq k} \leq s \cdot (l + kt + 1). \]
The lower bound

Theorem

For any $d, t \geq 2$ such that $t < \frac{d}{4}$, the polynomial $f(x) = \sum_{i=1}^{m} (x - a_i)^d$ with distinct a_i's and $m = \left\lfloor \sqrt{\frac{d}{t}} \right\rfloor$ is hard:

If $f = \sum_{i=1}^{s} \alpha_i Q_i^{e_i}$ with each Q_i of degree $\leq t$ then $s = \Omega \left(\sqrt{\frac{d}{t}} \right)$.

Proof.

- Pick $k = m - 1$ and $l = (d/m) - 3m/2$: $\langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k}$ is full.
- Hence $\dim \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} = (k + 1)l + k(k + 1)/2 = \Omega(d)$.
- Upper bound for sums of powers:
 $\dim \langle x^{\leq i+l} \cdot f^{(i)} \rangle_{i \leq k} \leq s \cdot (l + kt + 1)$.
- This gives $s = \Omega \left(\frac{d}{l+kt+1} \right)$.
Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

$$f(x) = \sum_{i=1}^{s} \alpha_i \cdot Q_i(x)^{e_i}$$
Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

\[f(x) = \sum_{i=1}^{s} \alpha_i Q_i(x)^{e_i} \]

- For any f of degree d, shifted derivatives cannot give a better bound than:

\[s = \Omega \left(\sqrt{\frac{d}{t}} \right) \]
Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:
 \[f(x) = \sum_{i=1}^{s} \alpha_i Q_i(x)^{e_i} \]

- For any f of degree d,
 shifted derivatives cannot give a better bound than:
 \[s = \Omega \left(\sqrt{\frac{d}{t}} \right) \]

- Can the Wronskian do better?
Limitations of Shifted Derivatives

- Recall we wish to find f hard to write as:

$$f(x) = \sum_{i=1}^{s} \alpha_i Q_i(x)^{e_i}$$

- For any f of degree d, shifted derivatives cannot give a better bound than:

$$s = \Omega \left(\sqrt{\frac{d}{t}} \right)$$

- Can the Wronskian do better?
- When are the $(x - a_i)^{e_i}$ linearly independent?
A natural first step?

We are looking for an f which does not belong to any subspace of the form:

$$\text{Span}(Q_{e_1}^{e_1}, \ldots, Q_s^{e_s}).$$

First step: find s-dimensional subspace of $\mathbb{K}_d[X]$ which is not of the form

$$\text{Span}(Q_{e_1}^{e_1}, \ldots, Q_s^{e_s}).$$