
Smoothed Complexity Theory

Markus Bläser1 and Bodo Manthey2

1 Saarland University, mblaeser@cs.uni-saarland.de
2 University of Twente, b.manthey@utwente.nl

Abstract. Smoothed analysis is a new way of analyzing algorithms
introduced by Spielman and Teng (J. ACM, 2004). Classical methods
like worst-case or average-case analysis have accompanying complexity
classes, like P and Avg-P, respectively. While worst-case or average-case
analysis give us a means to talk about the running time of a particu-
lar algorithm, complexity classes allows us to talk about the inherent
difficulty of problems.
Smoothed analysis is a hybrid of worst-case and average-case analysis
and compensates some of their drawbacks. Despite its success for the
analysis of single algorithms and problems, there is no embedding of
smoothed analysis into computational complexity, which is necessary to
classify problems according to their intrinsic difficulty.
We propose a framework for smoothed complexity theory, define the
relevant classes, prove some first results, and study some examples.

1 Introduction

Computational complexity theory is the science of classifying computational
problems according to their intrinsic difficulty. While the analysis of algorithms
is concerned with analyzing, say, the running time of a particular algorithm,
complexity theory rather analyses the amount of resources that all algorithms
need at least to solve a given problem.

Classical complexity classes, like P, reflect worst-case analysis of algorithms.
A problem is in P if there is an algorithm whose running time on all inputs of
length n is bounded by a polynomial in n. Worst-case analysis has been a success
story: The bounds obtained are valid for every input of a given size, and, thus,
we do not have to think about typical instances of our problem. If an algorithm
has a good worst-case upper bound, then this is a very strong statement: The
algorithm will perform well in practice. (For practical purposes, “good upper
bound” of course also includes constants and lower order terms.)

However, some algorithms – like quicksort or the simplex algorithm for linear
programming – work well in practice, despite having a provably high worst-case
running time. The reason for this is that the worst-case running time can be
dominated by a few pathological instances that rarely or never occur in prac-
tice. An alternative to worst-case analysis is average-case analysis. Many of the
algorithms with poor worst-case but good practical performance have a good av-
erage running time. This means that the expected running time with instances
drawn according to some fixed probability distribution is low.

1

In complexity-theoretic terms, P is the class of all problems that can be solved
with polynomial worst-case running time. In the same way, the class Avg-P
is the class of all problems that have polynomial average-case running time.
Average-case complexity theory studies the structural properties of average-case
running time. Bogdanov and Trevisan give a comprehensive survey of average-
case complexity [6].

While worst-case complexity has the drawback of being often pessimistic,
the drawback of average-case analysis is that random instances have often very
special properties with high probability. These properties of random instances
distinguish them from typical instances. Since a random and a typical instance
is not the same, a good average-case running time does not necessarily explain
a good performance in practice. In order to get a more realistic performance
measure, Spielman and Teng have proposed a new way to analyze algorithms
called smoothed analysis [21]. In smoothed analysis, an adversary chooses an
instance, and then this instance is subjected to a slight random perturbation. We
can think of this perturbation as modeling measurement errors or random noise
or the randomness introduced by taking, say, a random poll. The perturbation is
controlled by some parameter φ, called the perturbation parameter. Spielman and
Teng have proved that the simplex method has a running time that is polynomial
in the size of the instance and the perturbation parameter [21]. (More precisely,
for any given instance, the expected running time on the perturbed instance is
bounded by a polynomial.) Since then, the framework of smoothed analysis has
been applied successfully to a variety of algorithms. We refer to a recent survey
for a broader picture of smoothed analysis [22]

However, with only few exceptions [3, 20], smoothed analysis has only been
applied yet to single algorithms or single problems. Up to our knowledge, there
is currently no attempt to formulate a smoothed complexity theory and, thus,
to embed smoothed analysis into computational complexity.

This paper is an attempt to define a smoothed complexity theory, includ-
ing notions of intractability, reducibility, and completeness. We define the class
Smoothed-P (Section 2), which corresponds to problems that can be solved
smoothed efficiently, we provide a notion of reducibility (Section 3), and de-
fine the class Dist-NPpara, which is a smoothed analogue of NP, and prove that
it contains complete problems (Section 4). We continue with some basic observa-
tions (Section 5). We also add examples of problems in Smoothed-P (Sections 6
and 7) and discuss the relationship of smoothed complexity to semi-random
models (Section 8). Finally, since this is an attempt of a smoothed complexity
theory, we conclude with a discussion of extension, shortcomings, and difficulties
of our definitions (Section 9).

2 Smoothed Polynomial Time and Smoothed-P

2.1 Basic Definitions

In the first application of smoothed analysis to the simplex method [21], the
strength of the perturbation has been controlled in terms of the standard de-

2

viation σ of the Gaussian perturbation. While this makes sense for numerical
problems, this model cannot be used for general (discrete problems). A more gen-
eral form of perturbation models has been introduced by Beier and Vöcking [2]:
Instead of specifying an instance that is afterwards perturbed (which can also
be viewed as the adversary specifying the mean of the probability distribution
according to which the instances are drawn), the adversary specifies the whole
probability distribution. Now the role of the standard deviation σ is taken over
by the parameter φ, which is an upper bound for the maximum density of the
probability distributions. For Gaussian perturbation, we have σ = Θ(1/φ). Be-
cause we do not want to restrict our theory to numerical problems, we have
decided to use the latter model.

Let us now define our model formally. Our perturbation models are families
of distributions D = (Dn,x,φ). The length of x is n (so we could omit the index
n but we keep it for clarity). Note that length does not necessarily mean bit
length, but depends on the problem. For instance, it can be the number of
vertices of the graph encoded by x. For every n, x, and φ, the support of the
distribution Dn,x,φ should be contained in the set {0, 1}≤poly(n). Let Sn,x = {y |
Dn,x,φ(y) > 0 for some φ}, and let Nn,x = |Sn,x|.

For all n, x, φ, and y, we demand Dn,x,φ(y) ≤ φ. This controls the strength
of the perturbation and restricts the adversary. We allow φ ∈ [1/Nn,x, 1]. Fur-
thermore, the values of φ are discretized, so that they can be described by at
most poly(n) bits. φ = 1 corresponds to the worst-case complexity; we can put
all the mass on one string. φ = 1/Nn,x models the average case; here we usually
have to put probability on an exponentially large set of strings. In general, the
larger φ, the more powerful the adversary. We call such families (Dn,x,φ)n,x,φ of
probability distributions parameterized families of distributions.

Now we can specify what it means that an algorithm has smoothed polyno-
mial running-time. The following definition can also be viewed as a discretized
version of Beier and Vöcking’s definition [3]. Note that we do not speak about
expected running-time, but over expected running-time to some power ε. This is
because the notion of expected running-time is not robust with respect to, e.g.,
quadratic slowdown. The corresponding definition for average-case complexity
is due to Levin [16]. We refer to Bogdanov and Trevisan [6] for a thorough
discussion of this issue.

Definition 2.1. An algorithm A has smoothed polynomial running time with
respect to the family D if there exists an ε > 0 such that, for all n, x, and φ, we
have Ey∼Dn,x,φ

(
tA(y;n, φ)ε

)
= O

(
n ·Nn,x · φ

)
.

This definition implies that (average-)polynomial time is only required if we
have φ = O(poly(n)/Nn,x). This seems to be quite generous at first glance,
but it is in accordance with, e.g., Spielman and Teng’s analysis of the simplex
method [21] or Beier and Vöcking’s analysis of integer programs [3]; they achieve
polynomial time running time only if they perturb all but at most O(log n)
digits: If we perturb a number with, say, a Gaussian of standard deviation
σ = 1/ poly(n), then we expect that the O(log n) most significant bits remain
untouched, but the less significant bits are random.

3

In average-case complexity, one considers not decision problems alone, but
decision problems together with a probability distribution. The smoothed ana-
logue of this are tuples (L,D), where L ⊆ {0, 1}∗ is a decision problem and
D is a parameterized family of distributions. We call such problems parame-
terized distributional problems. As some examples for distributional problems,
we will study the bounded halting problem, binary integer optimization, and
graph problems under the smoothed extension of Gn,p. The notion of smoothed
polynomial running-time (Definition 2.1) allows us to define what it means for a
parameterized distributional problem to have polynomial smoothed complexity.

Definition 2.2. Smoothed-P is the class of all (L,D) such that there is a de-
terministic algorithm A with smoothed polynomial running time that decides L.

As an alternative, we can characterize smoothed polynomial running-time in
terms of polynomial tail bounds.

Theorem 2.3. An algorithm A has smoothed polynomial running time if and
only if there is an ε > 0 and a polynomial p such that for all n, x, φ, and t,

Pry∼Dn,x,φ [tA(y;n, φ) ≥ t] ≤ p(n)
tε ·Nn,x · φ.

2.2 Heuristic Schemes

A different way to think about efficiency in the smoothed setting is via so-called
heuristic schemes. This notion comes from average-case complexity [6], but can
be adapted to our smoothed setting. The notion of a heuristic scheme comes from
the observation that, in practice, we might only be able to run our algorithm
for a polynomial number of steps. If the algorithms does not succeed within this
time bound, then it “fails”, i.e., it does not solve the given instance. The failure
probability decreases polynomially with the running time that we allow. The
following definition captures this.

Definition 2.4. Let (L,D) be a smoothed distributional problem. An algorithm
A is an errorless heuristic scheme for (L,D) if there is a polynomial q such that

1. For every n, every x, every φ, every δ > 0, and every y ∈ suppDn,x,φ, we
have A(y;n, φ, δ) outputs either L(y) or ⊥.

2. For every n, every x, every φ, every δ > 0, and every y ∈ suppDn,x,φ, we
have tA(y;n, δ) ≤ q(n,Nn,xφ, 1/δ).

3. For every n, x, φ, δ > 0, and y ∈ suppDn,x,φ, Pry∼Dn,x,φ [A(y;n, φ, δ) =
⊥] ≤ δ.

Theorem 2.5. (L,D) ∈ Smoothed-P if and only if (L,D) has an errorless
heuristic scheme.

2.3 Alternative Definition: Bounded Moments

At first glance, one might be tempted to use “expected running time” for the
definition of Avg-P and Smoothed-P. However, as mentioned above, simply using

4

the expected running time does not yield a robust measure. This is the reason
why the expected value of the running time raised to some (small) constant
power is used. Röglin and Teng [19, Theorem 6.2] proved that for integer pro-
gramming,the expected value indeed provides a robust measure. The reason for
this is that all finite moments of the Pareto curve are polynomially bounded.
Thus, a polynomial slow down does not cause the expected running time to jump
from polynomial to exponential.

As far as we are aware, this phenomenon, i.e., the case that all finite moments
have to be bounded by a polynomial, has not been studied yet in average-case
complexity. Thus, for completeness, we define the corresponding average-case
and smoothed complexity classes as an alternative to Avg-P and Smoothed-P.

Definition 2.6. 1. An algorithm has robust smoothed polynomial running
time with respect to D if, for all fixed ε > 0 and for every n, x, and φ, we
have Ey∼Dn,x,φ

(
tA(y;n, φ)ε

)
= O

(
n · Nn,x · φ

)
. Smoothed-PBM is the class

of all (L,D) for which there exists a deterministic algorithm with robust
smoothed polynomial running time. (The “PBM” stands for “polynomially
bounded moments”.)

2. An algorithm A has robust average polynomial running time with respect
to D if, for all fixed ε > 0 and for all n, we have Ey∼Dn

(
tA(y)ε

)
= O(n).

Avg-PBM contains all (L,D) for which there exists a deterministic algorithm
with robust smoothed polynomial running time.

From the definition, we immediately get Smoothed-PBM ⊆ Smoothed-P and
Avg-PBM ⊆ Avg-P. From Röglin and Teng’s result [19], one might suspect
Avg-P = Avg-PBM and Smoothed-P = Smoothed-PBM, but this does not hold.

Theorem 2.7. Avg-PBM (Avg-P and Smoothed-PBM (Smoothed-P.

We conjecture that, assuming the exponential time hypothesis (ETH) [14],
even an L ∈ NP exists to separate Avg-P from Avg-PBM and Smoothed-P from
Smoothed-PBM. Given the ETH, 3SAT requires time 2Ω(n) in the worst case,
thus also on average if we use the universal distribution. This holds even if we
restrict 3SAT to O(n) clauses. However, n is here the number of variables, not the
bit length of the input, which is roughly Θ(n log n). Thus, a direct application
of the ETH seems to be impossible here.

3 Disjoint Supports and Reducibility

The same given input y can appear with very high and with very low probability
at the same time. What sounds like a contradiction has an easy explanation:
Dn,x,φ(y) can be large whereas Dn,x′,φ(y) for some other x′ is small. But if we
only see y, we do not know whether x or x′ was perturbed. This causes some
problems when one wants to develop a notion of reduction and completeness.

For a parameterized distributional problem (L,D), let

Lds = {〈x, y〉 | y ∈ L and |y| ≤ poly(|x|)}.

5

The length of |y| is bounded by the same polynomial that bounds the length of
the strings in any suppDn,x,φ. We will interpret a pair 〈x, y〉 as “y was drawn
according to Dn,x,φ”. With the notion of Lds, we can now define a reducibility
between parameterized distributional problems. We stress that, although the
definition below involves Lds and L′ds, the reduction is defined for pairs L and L′

and neither of the two is required to be a disjoint-support language. This means
that, for (L,D), the supports of Dn,x,φ for different x may intersect. And the
same is allowed for (L′,D′).

Definition 3.1. Let (L,D) and (L′,D) be two parameterized distributional prob-
lems. (L,D) reduces to (L′,D′) (denoted by “(L,D) ≤smoothed (L′,D′)”) if there
is a polynomial time computable function f such that for every n, every x, every
φ and every y ∈ suppDn,x,φ the following holds:

1. 〈x, y〉 ∈ Lds if and only if f(〈x, y〉;n, φ) ∈ L′ds.
2. There exist polynomials p and m such that, for every n, x, and φ and every

y′ ∈ suppD′m(n),f1(〈x,y〉;n,φ),φ, we have∑
y:f2(〈x,y〉;n,φ)=y′ Dn,x,φ(y) ≤ p(n)Dm(n),f1(〈x,y〉;n,φ),φ(y′),

where f(〈x, y〉;n, φ) = 〈f1(〈x, y〉;n, φ), f2(〈x, y〉;n, φ)〉.

(Note that we could also allow that φ on the right-hand side is polynomially
transformed. However, we currently do not see how to benefit from this.)

It is easy to see that ≤smoothed is transitive. Ideally, Smoothed-P should be
closed under this type of reductions. However, we can only show this for the
related class of problems with disjoint support.

Definition 3.2. Smoothed-Pds is the set of all distributional problems with dis-
joint supports such that there is an algorithm A for Lds with smoothed polynomial
running time.

Now, Smoothed-Pds is indeed closed under the above type of reductions.

Theorem 3.3. If (L,D) ≤smoothed (L′,D′) and (L′ds,D′) ∈ Smoothed-Pds, then
(Lds,D) ∈ Smoothed-Pds.

With the definition of disjoint support problems, a begging question is how
the complexity of L and Lds are related. It is obvious that (L,D) ∈ Smoothed-P
implies (Lds,D) ∈ Smoothed-Pds. However, the converse is not so obvious. The
difference between L and Lds is that for Lds, we get the x from which the input
y was drawn. While this extra information does not seem to be helpful at a first
glance, we can potentially use it to extract randomness from it. So this question
is closely related to the problem of derandomization.

But there is an important subclass of problems in Smoothed-Pds whose coun-
terparts are in Smoothed-P, namely those which have an oblivious algorithm with
smoothed polynomial running time. We call an algorithm (or heuristic scheme)
for some problem with disjoint supports oblivious if the running time on 〈x, y〉

6

does not depend on x (up to constant factors). Let Smoothed-Pobl
ds be the result-

ing subset of problems in Smoothed-Pds that have such an oblivious algorithm
with smoothed polynomial running time.

Theorem 3.4. For any parameterized problem (L,D), (L,D) ∈ Smoothed-P if
and only if (Lds,D) ∈ Smoothed-Pobl

ds .

Note that almost all algorithms, for which a smoothed analysis has been
carried out, do not know the x from which y was drawn; in particular, there is
an oblivious algorithm for them. Thus, we ask the question: Is there a problem
(L,D) /∈ Smoothed-P but (Lds,D) ∈ Smoothed-Pds?

Note that in Lds, each y is paired with every x, so there is no possibility
to encode information by omitting some pairs. This prohibits attempts for con-
structing such a problem like considering pairs 〈x, f(x)〉 where f is some one-way
function. For the classes Smoothed-BPP or Smoothed-P/poly, which can be de-
fined in the obvious way, knowing x does not seem to help, since, given y, it
should be possible to use the internal random bits (or the advice) to find an x′

that is good enough.

4 Parameterized Distributional NP

In this section, we define the smoothed analogue of the worst-case class NP
and the average-case class DistNP [13, 16]. First, we have to restrict ourself to
“natural” distributions. This rules out, for instance, probability distributions
based on Kolmogorov complexity that (the universal distribution), under which
worst-case complexity equals average-case complexity for all problems [17]. We
transfer the notion of computable ensembles to smoothed complexity.

Definition 4.1. A parameterized family of distributions is in PComppara if the
cumulative probability FDn,x,φ =

∑
z≤xDn,x,φ is can be computed in polynomial

time (given n, x and φ in binary).

With this notion, we can define the smoothed analogue of NP and DistNP.

Definition 4.2. Dist-NPpara = {(L,D) | L ∈ NP and D ∈ PComppara}.

Having defined Dist-NPpara, we now prove that bounded halting – given a
Turing machine, an input, and a running-time bound, does the Turing machine
halt on this input within the given time bound – is complete for Dist-NPpara.
Bounded halting is the canonical NP-complete language, and it has been the
first problem that has been shown to be Avg-P-complete [16]. Formally, let

BH = {〈g, x, 1t〉 | NTM with Gödel number g accepts x within t steps}.

Theorem 4.3. (BH, UBH) is Dist-NPpara-complete under smoothed reductions for
some UBH ∈ PComppara.

7

The original DistNP-complete problem by Levin [16] was Tiling (see also
Wang [23]): An instance of the problem consists of a finite set T of square tiles,
a positive integer t, and a sequence s = (s1, . . . , sn) for some n ≤ t such that si
matches si+1 (the right side of si equals the left side of si+1). The question is
whether S can be extended to tile an n× n square using tiles from T .

Theorem 4.4. (Tiling, UTiling) is Dist-NPpara-complete under ≤smoothed for
some UTiling ∈ PComppara.

5 Basic Relations to Worst-Case Complexity

Theorem 5.1. If L ∈ P, then (L,D) ∈ Smoothed-P for any D. If (L,D) ∈
Smoothed-P with D = (Dn,x,φ)n,x,φ, then (L, (Dn,xn,φ)n) ∈ Avg-P for φ =
O(poly(n)/Nn,x) and every sequence (xn)n of strings with |xn| ≤ poly(n).

The observation that Avg-P, P, and Smoothed-P coincide for unary languages
allows us to transfer the result that DistNP ⊆ Avg-P implies NE = E [4] to
smoothed complexity.

Theorem 5.2. If Dist-NPpara ⊆ Smoothed-P, then NE = E.

6 Tractability 1: Integer Programming

Now we will deal with tractable – in the smoothed sense – optimization prob-
lems: We will show that if a binary integer linear program can be solved in
pseudo-polynomial time, then the corresponding decision problem belongs to
Smoothed-P. This result is similar to Beier and Vöckings characterization [3].

A binary optimization problem is an optimization problem of the form “max-
imize cTx subject to wTi x ≤ ti for i ∈ [k] and x ∈ S ⊆ {0, 1}n”. Here,
cTx =

∑n
j=1 cjxj is the linear objective function and wTi x =

∑n
j=1 wi,jxj ≤ ti

are linear constraints. Furthermore, we have the constraint that the binary vec-
tor x must be contained in the set S. This set S should be viewed as containing
the “structure” of the problem. Examples are that S contains all binary vec-
tors representing spanning trees in a graph of n vertices or that S represents all
paths connecting two given vertices or that S contains all vectors corresponding
to perfect matchings of a given graph. Maybe the simplest case is k = 1 and
S = {0, 1}n; then the binary program above represents the knapsack problem.

We assume that S is adversarial (i.e., non-random). Since we deal with deci-
sion problems in this paper rather than with optimization problems, we use the
standard approach and introduce a threshold for the objective function. This
means that the optimization problem becomes the question whether there is an
x ∈ S that fulfills cTx ≥ b as well as wTi x ≤ ti for all i ∈ {1, . . . , k}. In the fol-
lowing, we treat the budget constraint cTx ≥ b as an additional linear constraint
for simplicity. We call this type of problems binary decision problems.

For ease of presentation, we assume that we have just one linear constraint
(whose coefficients will be perturbed) and everything else is encoded in the set

8

S. This means that the binary decision problem that we want to solve is the
following: Does there exist an x ∈ S with wTx ≤ t?

The values w1, . . . , wn are n-bit binary numbers. Thus, wi ∈ {0, 1, . . . , 2n−1}.
While we can of course vary their length, we choose to do it this way as it conveys
all ideas while avoiding another parameter.

We do not make any assumption about the probability distribution of any
single coefficient. Instead, our result holds for any family of probability distri-
bution that fulfills the following properties: w1, . . . , wn are drawn according to
independent distributions. The set S and the threshold t are part of the input
and not subject to randomness. Thus, Nn,(S,w,t) = 2n

2

for any instance (S,w, t)
of size n. We assume that S can be encoded by a polynomially long string. (This
is fulfilled for most natural optimization problems, like TSP, matching, shortest
path, or knapsack.) The fact that w1, . . . , wn are drawn independently means
that the probability for one coefficient to assume a specific value is bounded
from above by φ1/n. Since Nn,(S,w) = 2n

2

, the perturbation parameter φ can

vary between 2−n
2

(for the average case) and 1 (for the worst case).
The proof of the following theorem is similar to the one by Beier and Vöcking

[3]. However, at various places it gets slightly more technical because we have
discrete rather than continuous probability distributions.

Theorem 6.1. If a binary decision problem can be solved in pseudo-polynomial
time, then it is in Smoothed-P.

The main open problem concerning Smoothed-P and integer optimization
is the following: Beier and Vöcking [3] have proved that (randomized) pseudo-
polynomiality and smoothed polynomiality are equivalent. The reason why we
do not get a similar result is as follows: Our “joint density” for all coefficients
is bounded by φ, and the density of a single coefficient is bounded by φ1/n. In
contrast, in the continuous version, the joint density is bounded by φn while a
single coefficient has a density bounded by φ.

However, our goal is to devise a general theory for arbitrary decision prob-
lems. This theory should include integer optimization, but it should not be re-
stricted to integer optimization. The problem is that generalizing the concept of
one distribution bounded by φ for each coefficient to arbitrary problems involves
knowledge about the instances and the structure of the specific problems. This
knowledge, however, is not available if we want to speak about classes of decision
problems as in classical complexity theory.

7 Tractability 2: Graphs and Formulas

Graph Coloring and Smoothed Extension of Gn,p. The perturbation model that
we choose is the smoothed extension of Gn,p [22]: Given an adversarial graph
G = (V,E) and an ε ∈ (0, 1/2], we obtain a new graph G′ = (V,E′) on the
same set of vertices by “flipping” each (non-)edge of G independently with a
probability of ε. This means the following: If e = {u, v} ∈ E, then e is contained
in E′ with a probability of 1− ε. If e = {u, v} /∈ E, then Pr(e ∈ E′) = ε.

9

Transferred to our framework, this means the following: We represent a graph

G on n vertices as a binary string of length
(
n
2

)
, and we have Nn,G = 2(n2). The

flip probability ε depends on φ: We choose ε ≤ 1/2 such that (1− ε)(
n
2) = φ.

We will focus on graph coloring as a very simple example. k-Coloring is
the decision problem whether the vertices of a graph can be colored with k
colors such that no pair of adjacent vertices get the same color. k-Coloring is
NP-complete for any k ≥ 3 [12, GT 4].

Theorem 7.1. For any k ∈ N, k-Coloring ∈ Smoothed-P.

Remark 7.2. Bohman et al. [7] and Krivelevich et al. [15] consider a slightly dif-
ferent model for perturbing graphs: Given an adversarial graph, we add random
edges to the graph to obtain our actual instance. No edges are removed.

They analyze the probability that the random graph thus obtained is guaran-
teed to contain a given subgraph H. By choosing H to be a clique of size k+1 and
using a proof similar to Theorem 7.1’s, we obtain that k-Coloring ∈ Smoothed-P
also with respect to this perturbation model.

Unsatisfiability and Smoothed-RP. Feige [10] and Coja-Oghlan et al. [9] have
considered the following model: We are given a (relatively dense) adversarial
Boolean k-CNF formula. Then we obtain our instance by negating each literal
with a small probability. It is proved that such smoothed formulas are likely to be
unsatisfiable, and that their unsatisfiability can be proved efficiently. However,
their algorithms are randomized, thus we do not get a result that kUNSAT (this
means that unsatisfiability problem for k-CNF formulas) for dense instances be-
longs to Smoothed-P. However, it shows that kUNSAT for dense instance belongs
to Smoothed-RP, where Smoothed-RP is the smoothed analogue of RP: A pair
(L,D) is in Smoothed-RP if there is a randomized polynomial algorithm A with
the following properties:

1. For all x /∈ L, A outputs “no” (independent of the perturbation).
2. For all x ∈ L, A outputs “yes” with a probability of at least 1/2. (This

property is also independent of the perturbation.)
3. A has smoothed polynomial running time with respect to D. (This property

is independent of the internal randomness of A.)

Note that we have two sources of randomness in Smoothed-RP: The instance
is perturbed, and the algorithm A is allowed to use randomness. Item 1 and 2
depend only on A’s own randomness. Item 3 depends only on the perturbation
D. More formally, let kUNSATβ be kUNSAT restricted to instances with at least
βn clauses, where n denotes the number of variables. Let ε be the probability
that a particular literal is negated. Feige [10] has presented a polynomial-time
algorithm with the following property: If β = Ω(

√
n log log n/ε2) and the per-

turbed instance of kUNSATβ is unsatisfiable, which it is with high probability,
then his algorithm proves that the formula is unsatisfiable with a probability of
at least 1− 2Ω(−n). The following result is a straightforward consequence.

Theorem 7.3. kUNSATβ ∈ Smoothed-RP for β = Ω(
√
n log log n).

10

8 Smoothed Analysis vs. Semi-Random Models

Semi-random models for graphs and formulas exist even longer than smoothed
analysis and can be considered as precursors to smoothed analysis. The basic
concept is as follows: Some instance is created randomly that possesses a partic-
ular property. This property can, for instance, be that the graph is k-colorable.
After that, the adversary is allowed to modify the instance without destroying
the property. For instance, the adversary can be allowed to add arbitrary edges
between the different color classes. Problems that have been considered in this
model or a variant thereof are independent set [11] or graph coloring [5, 8, 11].
However, we remark that these results do not easily fit into a theory of smoothed
analysis. The reason is that in these semi-random models, we first have the ran-
dom instance, which is then altered by the adversary. This is in contrast to
smoothed analysis in general and our smoothed complexity theory in particular,
where we the adversarial decisions come before the randomness is applied.

9 Discussion

Our framework has many of the characteristics that one would expect. We have
reductions and complete problems and they work in the way one expects them
to work. To define reductions, we have to use the concept of disjoint supports.
It seems to be essential that we know the original instance x that the actual
instance y was drawn from to obtain proper domination. Although this is some-
what unconventional, we believe that this is the right way to define reductions in
the smoothed setting. The reason is that otherwise, we do not know the probabil-
ities of the instances, which we need in order to apply the compression function.
The compression function, in turn, seems to be crucial to prove hardness results.
Still, an open question is whether a notion of reducibility can be defined that cir-
cumvents these problems. Moreover, many of the positive results from smoothed
analysis can be cast in our framework, like it is done in Sections 6 and 7.

Many positive results in the literature state their bounds in the number of
“entities” (like number of nodes, number of coefficients) of the instance. However,
in complexity theory, we measure bounds in the length (number of symbols) of
the input in order to get a theory for arbitrary problems, not only for problems of
a specific type. To state bounds in terms of bit length makes things less tight, for
instance the reverse direction of integer programming does not work. But still,
we think it is more important and useful to use the usual notion of input length
such that smoothed complexity fits with average-case and worst-case complexity.

Finally, the results by Röglin and Teng [19] show that, for binary optimization
problems, expected polynomial is indeed a robust measure. We have shown that
this is in general not the case. To do this, we have used a language in E. The
obvious question is now whether Avg-P and Avg-PBM as well as Smoothed-P and
Smoothed-PBM coincide for problems in NP.

We hope that the present work will stimulate further research in smoothed
complexity theory in order to get a deeper understanding of the theory behind
smoothed analysis.

11

References

1. S. Arora, B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

2. R. Beier, B. Vöcking. Random knapsack in expected polynomial time. JCSS,
69(3):306–329, 2004.

3. R. Beier, B. Vöcking. Typical properties of winners and losers in discrete opti-
mization. SIAM J. Comp., 35(4):855–881, 2006.

4. S. Ben-David, B. Chor, O. Goldreich, M. Luby. On the theory of average case
complexity. JCSS, 44(2):193–219, 1992.

5. A. L. Blum, J. Spencer. Coloring random and semi-random k-colorable graphs. J.
Algorithms, 19(2):204–234, 1995.

6. A. Bogdanov, L. Trevisan. Average-case complexity. Foundations and Trends in
Theoret. Comput. Sci., 2(1):1–106, 2006.

7. T. Bohman, A. M. Frieze, M. Krivelevich, R. Martin. Adding random edges to
dense graphs. Random Struct. Alg., 24(2):105–117, 2004.

8. A. Coja-Oghlan. Colouring semirandom graphs. Combinatorics, Prob. & Comp.,
16(4):515–552, 2007.

9. A. Coja-Oghlan, U. Feige, A. M. Frieze, M. Krivelevich, D. Vilenchik. On smoothed
k-CNF formulas and the Walksat algorithm. Proc. 20th SODA, pp. 451–460,2009.

10. U. Feige. Refuting smoothed 3CNF formulas. Proc. 48th FOCS, pp. 407–417, 2007.
11. U. Feige, J. Kilian. Heuristics for semirandom graph problems. JCSS, 63(4):639–

671, 2001.
12. M. R. Garey, D. S. Johnson. Computers and Intractability. W. H. Freeman and

Company, 1979.
13. Y. Gurevich. Average case completeness. JCSS, 42(3):346–398, 1991.
14. R. Impagliazzo, R. Paturi, F. Zane. Which problems have strongly exponential

complexity? JCSS, 63(4):512–530, 2001.
15. M. Krivelevich, B. Sudakov, P. Tetali. On smoothed analysis in dense graphs and

formulas. Random Struct. Alg., 29(2):180–193, 2006.
16. L. Levin. Average case complete problems. SIAM J. Comp., 15(1):285–286, 1986.
17. M. Li, P. M. B. Vitányi. Average case complexity under the universal distribution

equals worst-case complexity. Inform. Proc. Lett., 42(3):145–149, 1992.
18. M. Li, P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its Ap-

plications. Springer, 1993.
19. H. Röglin, S.-H. Teng. Smoothed analysis of multiobjective optimization. Proc.

50th FOCS, pp. 681–690, 2009.
20. H. Röglin, B. Vöcking. Smoothed analysis of integer programming. Math. Prof.,

110(1):21–56, 2007.
21. D. A. Spielman, S.-H. Teng. Smoothed analysis of algorithms: Why the simplex

algorithm usually takes polynomial time. J. ACM, 51(3):385–463, 2004.
22. D. A. Spielman, S.-H. Teng. Smoothed analysis: An attempt to explain the behavior

of algorithms in practice. Comm. ACM, 52(10):76–84, 2009.
23. J. Wang. Average-case intractable NP problems. In D.-Z. Du and K.-I. Ko, editors,

Advances in Languages, Algorithms, and Complexity, pp. 313–378. Kluwer, 1997.
24. H. S. Wilf. Some examples of combinatorial averaging. Amer. Math. Monthly,

92(4):250–261, 1985.

12

A Proofs of Section 2

Theorem 2.3. An algorithm A has smoothed polynomial running time if and
only if there is an ε > 0 and a polynomial p such that for all n, x, φ, and t,

Pr
y∼Dn,x,φ

[tA(y;n, φ) ≥ t] ≤ p(n)

tε
·Nn,x · φ.

Proof. Let A be an algorithm whose running time tA fulfills

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

)
= O (n ·Nn,xφ) .

The probability that the running time exceeds a certain value t can be bounded
by Markov’s inequality:

P(tA(y;n, φ) ≥ t) = P
(
tA(y;n, φ)ε ≥ tε

)
≤

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

)
tε

= O
(
n ·Nn,xφ · t−ε

)
.

For the other direction, assume that

Pr
y∼Dn,x,φ

[tA(y;n, φ) ≥ t] ≤ nc

tε
·Nn,xφ

for some constants c and ε. Let ε′ = ε/(c+ 2). Then we have

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

′)
=
∑
t

P(tA(y;n, φ)ε
′
≥ t)

≤ n+
∑
t≥n

P(tA(y;n, φ) ≥ t1/ε
′
)

≤ n+
∑
t≥n

t−2 ·Nn,xφ = n+O(Nn,xφ).

ut

Theorem 2.5. (L,D) ∈ Smoothed-P if and only if (L,D) has an errorless heuristic
scheme.

Proof. Let A be an algorithm for (L,D). By Theorem 2.3, the probability that

P(tA(y;n, φ) ≥ t) = O
(
n ·Nn,xφ · t−ε

)
.

We get an errorless heuristic scheme B from A as follows: Simulate A for (n ·
Nn,xφ/δ)

1/ε steps. If A stops within these number of steps, then output whatever
A outputs. Otherwise, output ⊥. By the choice of the parameters, the probability
that B outputs ⊥ is bounded by δ.

For the other direction, let A be an errorless heuristic scheme for (L,D). We
get an algorithm with smoothed polynomial running time by first running A with

13

δ = 1/2, then with δ = 1/4, and in the ith iteration with δ = 1/2i. Whenever A
does not answer ⊥, B gives the same answer and stops. B will eventually stop,
when δ < Dn,x,φ(y). For i iterations, B needs

i∑
j=1

q(n,Nn,xφ, 2
j) ≤ poly(n,Nn,xφ) · 2ci

for some constant c. B stops after i iterations for all but a 2−i fraction of the
input. Thus B has smoothed polynomial running time. (Choose ε < 1/c.) ut

Theorem 2.7. Avg-PBM (Avg-P and Smoothed-PBM (Smoothed-P.

Proof. We only prove the theorem for average-case complexity. The proof for
the smoothed complexity case is almost identical.

By the time hierarchy theorem [1], there is a language L′ ∈ DTime(2n) such
that L′ /∈ DTime(2o(n)). Consider the following language L = {x0n | |x| = n, x ∈
L′}. Let D′ = (D′n) be a hard probability distribution for L′, i.e., (L′,D′) is as
hard to solve as L′ in the worst case [17,18]

Let D = (Dn) be given as follows:

Dn(xy) =

{
2−n ·D′n(x) if |x| = n and y = 0n and

2−2n otherwise.

Since L′ ∈ DTime(2n), we have (L,D) ∈ Avg-P: L can be decided in expected
time time 2−n · 2n + O(n) = O(n). Now we prove that (L,D) /∈ Avg-PBM. If
(L,D) ∈ Avg-PBM were true, then 2−n · Ex∼D′

n
(t(x)c) would be bounded by a

polynomial for all fixed c. Here, t is the time needed to solve the L′ instance x.

Our choice of D′, Jensen’s inequality, and the fact that L′ /∈ DTime(2o(n))
implies that Ex∼D′

n
(t(x)c) ≥ Ex∼D′

n
(t(x))c = 2c·Ω(n). Thus, for some sufficiently

large c, 2−n · Ex∼D′
n
(t(x)c) exceeds any polynomial. ut

Theorem 3.3. If (L,D) ≤smoothed (L′,D′) and (L′ds,D′) ∈ Smoothed-Pds, then
(Lds,D) ∈ Smoothed-Pds.

Proof. Let A′ be a an errorless heuristic scheme for (L′ds,D′). Let f be the reduc-
tion from (L,D) to (L′,D′) and let p and m be the corresponding polynomials.

We claim that A(〈x, y〉;n, φ, δ) = A′(f(〈x, y〉;n, φ);m(n), φ, δ/p(n)) is an er-
rorless heuristic scheme for (Lds,D). To prove this, let

B = {y′ ∈ suppD′m(n),f1(〈x,y〉;n,φ),φ | A
′(〈f(〈x, y〉;n, φ), y′〉;m(n), φ, δ/p(n)) = ⊥}

be the set of string on which A′ fails.

14

Because A′ is a heuristic scheme, we have D′m(n),f1(〈x,y〉;n,φ),φ(B) ≤ δ/p(n).
Therefore,

Pr
y∼Dn,x,φ

(A(〈x, y〉;n, φ, δ) = ⊥)

= Pr
y∼Dn,x,φ

(A′(f(〈x, y〉;n, φ);m(n), φ, δ/p(n) = ⊥)

=
∑

y:f2(〈x,y〉;n,φ)∈B

Dn,x,φ(y)

≤
∑
y′∈B

p(n)D′m(n);f1(〈x,y〉;n,φ);φ(y′)

= p(n)D′m(n);f1(〈x,y〉;n,φ);φ(B) ≤ δ.

Thus, (Lds,D) ∈ Smoothed-Pds. ut

B Proofs of Section 3

Theorem 3.4. For any parameterized problem (L,D), (L,D) ∈ Smoothed-P if
and only if (Lds,D) ∈ Smoothed-Pobl

ds .

Proof. Let A be an oblivious algorithm with smoothed polynomial running time
for Lds. Since A is oblivious, we get an algorithm for L with the same running
time (up to constant factors) by running A on 〈x0, y〉 on input y, where x0 is an
arbitrary string of length n. ut

C Proofs of Section 4

For the completeness result of BH, we first need a “compression function” ac-
cording to the following lemma.

Lemma C.1. Let D = (Dn,x,φ) ∈ PComppara be an ensemble. There exists a
deterministic algorithm C such that the following holds:

1. C(y;n, x, φ) runs in time polynomial in n and φ for all y ∈ suppDn,x,φ.
2. For every y, y′ ∈ suppDn,x,φ, C(y;n, x, φ) = C(y′;n, x, φ) implies y = y′.
3. If Dn,x,φ(y) < 2−|y|, then |C(y;n, x, φ)| = 1 + |y|. Else, |C(y;n, x, φ)| =

log 1
Dn,x,φ(y)

+ c · log n+ 1 for some constant c.

Proof. Consider any string y ∈ supp(Dn,x,φ). If Dn,x,φ(y) ≤ 2−|y|, then we let
C(y;n, x, φ) = 0y. If Dn,x,φ(y) > 2−|x|, then let y′ be the string that precedes y
in lexicographic order, and let p = FDn,x,φ(y′). Then we set C(y;n, x, φ) = 1a,
where a is the longest common prefix of the binary representation of p and
FDn,x,φ(y) = p+Dn,x,φ(y). Since D ∈ PComppara, the string z can be computed
in polynomial time.

We have Dn,x,φ(y) ≤ 2−|a|, since adding Dn,x,φ(y) leaves the first |a| bits of
p unchanged.

15

Let z be another string, z′ its predecessor and b the longest common prefix
of q = FDn,x,φ(z′) and q+Dn,x,φ(z′). The intervals [p, p+Dn,x,φ(y)) and [q, q+
Dn,x,φ(y)) are disjoint by construction. Therefore, a and b have to be different,
because otherwise these intervals would intersect.

Let c be such that |y| ≤ nc for all y ∈ supp(Dn,x,φ). We set

C(y;n, x, φ) = 1 bin(|a|)a0
log 1

Dn,x,φ(y)
−|a|

.

(Note that log 1
Dn,x,φ(y)

≥ |a|.) Here bin(|a|) is a fixed length binary encoding of

a. We can bound this length by c log n. The total length of C(y;n, x, φ) is

|C(y;n, x, φ)| = 1 + c log n+ log
1

Dn,x,φ(y)
.

It remains to be proved that C is injective. Let C(y;n, x, φ) = C(z;n, x, φ). If
C(y;n, x, φ) starts with a 0, then obviously y = z. If C(y;n, x, φ) starts with a
1, then the prefixes a and b are the same. Therefore y = z by the consideration
above. ut

The instances of BH are triples 〈g, x, 1t〉 of length 2 log |g| + 2 log |x| + |x| +
|g|+ t+Θ(1). Let

UBH
N,〈g,x,1t〉,φ(〈g′, x′, 1t

′
〉) =

{
cφ2−|x

′| if g = g′, N = |〈g′, x′, 1t′〉|, |x′| ≥ log 1
φ ,

0 otherwise.

Above, cφ is an appropriate scaling factor. More precisely, cφ is the reciprocal
of the number of possible lengths for a string x′, i.e., it is of order 1

N−log φ . In

particular, UBH
N,〈g,x,1t〉,φ(y) ≤ φ for all y.

Theorem 4.3. (BH, UBH) is Dist-NPpara-complete under polynomial-time smoothed
reductions.

Proof. Let (L,D) ∈ Dist-NPpara be arbitrary. Let p(n) be an upper bound for the
length of the strings in any supp(Dn,x,φ). Let M be a nondeterministic machine
that accepts an input a if and only if there is a string y ∈ L with C(y;n, x, φ) = a.
Let q be an upper bound on the running time of M . Let g be the Gödel number
of M . Our reduction maps a string y to

f(〈x, y〉;n, x, φ) =
〈
〈g, C(x;n, x, φ), 1t〉, 〈g, C(y;n, x, φ), 1t

′
〉
〉

where t and t′ chosen in such a way that they are larger than q(p(|x|)). (And
t and t′ should be chosen in such a way that all tuples have the same length
N(n).)

By construction, 〈x, y〉 ∈ Lds if and only if f(〈x, y〉;n, x, φ) ∈ BHds.
Domination remains to be verified. Since C is injective, at most one y is

mapped to 〈g, a, 1t〉 given n, x, and φ. We have

UBH
N,〈g,C(x;n,x,φ),1t〉,φ(〈g, C(y;n, x, φ), 1t

′
〉) = cφ · 2−|C(y;n,x,φ)|.

16

If |C(y;n, x, φ)| ≤ log 1
Dn,x,φ(y)

+ c log n+ 1, then

UBH
N,〈g,C(x;n,x,φ),1t〉,φ(〈g, C(y;n, x, φ), 1t

′
〉) ≤ cφ ·

Dn,x,φ(x)

2nc

and domination is fulfilled. If |C(y;n, x, φ)| = 1 + |y|, then

UBH
N,〈g,C(x;n,x,φ),1t〉,φ(〈g, C(y;n, x, φ), 1t

′
〉) ≤ cφ · 2−|y|−1 ≤ 2cφ ·Dn,x,φ(y).

This completes the hardness proof. The completeness follows since (BH, UBH) is
indeed contained in Dist-NPpara. ut

We use the following probability distribution for Tiling:

UTiling

N,〈T,s,1t〉,φ(〈T ′, s′, 1t
′
〉) =

{
cφa
−|s′| if T = T ′, N = |〈T ′, s′, 1t′〉|, |T ′| ≥ log 1

φ ,

0 otherwise.

Here, a is the number of possible choices in T for each initial tile si.

Theorem 4.4. (Tiling, UTiling) is Dist-NPpara-complete under ≤smoothed.

Proof. By construction, we have (Tiling, UTiling) ∈ Dist-NPpara. For simplicity,
we assume that the set T of tiles always contains two tiles encoding the input
bits “0” and “1” and that these are the only possible tiles for the initial tiling
(s1, . . . , sn). (The problem does not become easier without this restriction, but
the hardness proof becomes more technical.)

For the hardness, (BH, UBH) reduces to (Tiling, UTiling) because the Turing
machine computations can be encoded as tiling problems in a straightforward
way [23] (the Gödel number g maps to some set T of tiles, and the input x maps
to the initial tiling s). Finally, Item 2 of the reduction (Definition 3.1) is fulfilled
can be seen to be satisfied because of the similarity between the two probability
distributions. ut

D Proofs of Section 7

Theorem 7.1. For any k ∈ N, k-Coloring ∈ Smoothed-P.

Proof. To show that k-Coloring ∈ Smoothed-P, we analyze the following simple
algorithm: First, we check whether the input graph contains a clique of size
k + 1. This can be done easily in polynomial time. If yes, we output no. If no,
we perform exhaustive search.

The analysis is similar to Wilf’s analysis [24] of the coloring problem: First,
we check whether the input graph contains a clique of size k + 1. This can be
done easily in polynomial time. If yes, we output no. If no, we perform exhaustive
search. The correctness of the algorithm is obvious.

A graph is k-colorable only if it does not contain a clique of size k + 1. The
probability that a specific set of k + 1 vertices form a k + 1 clique is at least

17

ε(
k+1
2). Thus, the probability that a graph G on n vertices does not contain a

k + 1 clique is at most
(

1− ε(
k+1
2)
) n
k+1

.

We distinguish two cases: First, ε ≥ 0.1. In this case,
(

1− ε(
k+1
2)
) n
k+1

can

be bounded from above by cn for some positive constant c < 1 that depends
on k. Brute-force testing whether a graph can be k-colored can be done in time
poly(n) · kn. The probability that we need brute force is at most cn. Thus, the
expected running-time, raised to the power ε = logk(1/c), is bounded from above
by a polynomial.

Second, ε < 0.1. Then we have φ = (1−ε)(
n
2) ≥ 0.9(n2). The allowed running-

time (raised to some constant power) is Nn,Gφn = 2(n2)φn ≥ 1.8(n2). Thus, we
can afford exhaustive search in every run. ut

E Proofs and Details of Section 6

Technical Lemmas and Main Theorem. The following simple lemma bounds the
probability that a certain coefficient assumes a value in a given small interval.

Lemma E.1. Let δ, z ∈ N. Let a be an n-bit coefficient drawn according to
some discrete probability distribution bounded from above by φ1/n. Then Pr(a ∈
[z, z + δ)) ≤ φ1/nδ.

Proof. There are exactly δ outcomes of a that lead to a ∈ [z, z + δ). Thus,
Pr(a ∈ [z, z + δ)) ≤ φ1/nε. ut

Our goal is to show that O(log(nφ1/n2n)) bits for each coefficient suffice to

determine whether a solution exists. (For the average case, we have φ = 2−n
2

,
thus O(log n) bits per coefficient.) To do this, it is not sufficient for an x ∈ S to
just satisfy wTx ≤ t: Because of the rounding, we might find that x is feasible
with respect to the rounded coefficients whereas x is infeasible with respect to
the true coefficients. Thus, what we need is that wTx is sufficiently smaller than
t. Then the rounding does not affect the feasibility. Unfortunately, we cannot
rule out the existence of solutions x ∈ S that are very close to the threshold
(after all, there can be an exponential number of solutions, and it is likely that
some of them are close to the threshold). But it is possible to prove the following:
Assume that there is some ranking among the solutions x ∈ S. Let the winner
be the solution x? ∈ S that fulfills wTx? ≤ t and is ranked highest among all
such solutions. Then it is likely that t−wTx? is not too small. Now, any solution
that is ranked higher than x? must be infeasible because it violates the linear
constraint wTx ≤ t. Let x̂ be the solution that minimizes wTx − t among all
solutions ranked higher than x?. Then it is also unlikely that wT x̂− t extremely
small, i.e., that x̂ violates the linear constraint by only a small margin.

Remark E.2. In Beier and Vöcking’s analysis [3], the ranking was given by the
objective function. We do not have an objective function here because we deal

18

with decision problems. Thus, we have to introduce a ranking artificially. In the
following, we use the lexicographic ordering (if not mentioned otherwise), which
satisfies the following monotonicity property that simplifies the proofs: if x ∈ S
is ranked higher than y ∈ S, then there is an i with xi = 1 and yi = 0.

Now let x? be the winner (if it exists), i.e., the highest ranked (with respect
to lexicographic ordering) solution among all feasible solutions. Then we define
the winner gap as

Γ (t) =

{
t− wTx? if there exists a feasible solution and

⊥ otherwise.

The goal is to show that it is unlikely that Γ is small. In order to analyze Γ ,
it is useful to define also the loser gap Λ. The loser x̂ ∈ S is a solution that is
ranked higher than x? but cut off by the constraint wTx ≤ t. It is the solution
with minimal wTx − t among all such solutions. (If there is a tie, which can
happen because we have discrete probability distributions, then we take the
highest-ranked solution as the loser.) We define

Λ(t) =

{
wT x̂− t if there exists a loser x̂ and

⊥ otherwise.

The probability that Λ or Γ is smaller than some value δ is bounded by δφ1/nn,
which we will prove in the following.

The following lemma states that it suffices to analyze Λ in order to get bounds
for both Λ and Γ . In fact, for the setting with just one linear constraint with
non-negative coefficients, we do not even need the winner gap. But the winner
gap is needed for more general cases, which we discuss briefly below but do not
treat in detail for conciseness.

Lemma E.3 (discrete version of [3, Lemma 7]). For all t and δ, we have
Pr(Γ (t) < δ) = Pr(Λ(t− δ) ≤ δ).

Proof. A solution x ∈ S is called Pareto-optimal if there is no other solution
x′ ∈ S such that wTx′ ≤ wTx and x′ is ranked higher than x. Let us make two
observations. First, we observe that both winners and losers are Pareto-optimal.
Second, for every Pareto-optimal solution x, there exists a threshold t such that
x is the loser for this particular threshold. To see this, simply set t = wTx− 1.

Let P ⊆ S be the set of Pareto-optimal solutions. Then

Γ (t) = min{t− wTx | x ∈ P,wTx ≤ t} and

Λ(t) = min{wTx− t | x ∈ P,wTx > t} = min{wTx− t | x ∈ P,wTx ≥ t+ 1}.

Now Γ (t) < δ if and only if there is an x ∈ P with t−wTx ∈ {0, . . . , δ−1}. This
is equivalent to wTx− t ∈ {−δ + 1, . . . , 0} and to wTx− (t− δ) ∈ {1, . . . , δ}. In
turn, this is equivalent to Λ(t− δ) ≤ δ. ut

19

Now we analyze Λ(t). The following lemma makes this rigorous. It is a discrete
counterpart to Beier and Vöcking’s separating lemma [3, Lemma 5]. We have to
assume that the all-zero vector is not contained in S. The reason for this is that
its feasibility does not depend on any randomness.

Lemma E.4 (separating lemma). Suppose that (0, . . . , 0) /∈ S. For every
δ, t ∈ N, we have Pr(Γ (t) < δ) ≤ δφ1/nn and Pr(Λ(t) ≤ δ) ≤ δφ1/nn.

If we use a non-monotone ranking, then the bounds for the probabilities be-
come δφ1/nn2.

Proof. Because of Lemma E.3, it suffices to analyze the loser gap Λ. We only
give a proof sketch for monotone rankings as that emphasis the differences to
the continuous counterpart [3, Lemma 5].

Let Si = {x ∈ S | xi = 1}, and let Si = S \ Si = {x ∈ S | xi = 0}. Let
x?i ∈ Si be the winner from Si: x

?i is ranked highest in Si and satisfies the
linear constraint wTx?i ≤ t. Let x̂i ∈ Si be the loser with respect to x?i, i.e., a
solution that is ranked higher than x?i and minimizes wT x̂i−t (if such a solution
exists). Let

Λi =

{
wT x̂i − t if x̂i exists and

⊥ otherwise.

Note that x̂i can be feasible and, thus, Λi can be negative.
To analyze Λi, we assume that all wj with j 6= i are fixed by an adversary.

The winner x?i does not depend wi because all solutions x ∈ Si have xi = 0.
Once x?i is fixed, also x̂i is fixed. Because wj for j 6= i is fixed and x̂ii = 1, we
can rewrite wT x̂i − t = z + wi. Now Λi ∈ {1, . . . , δ} if wi assumes a value in
some interval of length δ, which happens with a probability of at most δφ1/n.

Furthermore, if Λ 6= ⊥, then there exists an i with Λi = Λ [3, Claim B]. Thus,
a union bound over all n possibilities for i yields Pr(Λ(t) ≤ δ) ≤ δφ1/nn. ut

For the probabilistic constraint wTx ≤ t, it is not sufficient for an x to satisfy
it. Instead, we want that only a few bits of each coefficient of w suffice to find
an x that satisfies that constraint. Here, “few” means roughly O(log(nφ1/n2n)).
(Note that this is roughly O(log n) if we are close to the average case, where

φ ≈ 2−n
2

.) Different from Beier and Vöcking’s continuous case (where the real-
valued coefficients where revealed by an oracle), we have the true coefficients at
hand. Thus, we do not need their certificates that a solution is indeed feasible,
but we can simply test with the true coefficients. Clearly, this testing can be
done in polynomial time.

For an n-bit natural number a and b ∈ N, let bacb = be the number obtained
from a by only taking the b most significant bits. This means that bacb = 2n−b ·
ba/2n−bc.

In order to show that pseudo-polynomiality implies smoothed polynomial
complexity, we use a pseudo-polynomial algorithm as a black box in the following
way: We run the pseudo-polynomial algorithm with the highest O(log n) bits.
(To do this, we scale the rounded coefficients of w down. Furthermore, we also

20

have to scale t down appropriately.) If we find a solution, then we check it against
the true coefficients of w. If it remains feasible, we output “yes”. If it becomes
unfeasible, then we take one more bit for each coefficient and continue. The
following lemma gives a tail bound for how long this can go on.

Lemma E.5. Assume that we use b bits for each coefficient of w. Let x? be the
winner (with respect to the true w without rounding). The probability that solving
the problem with b bits for each coefficient yields a solution different from x? is
bounded from above by 2n−bφ1/nn2.

Proof. We only get a solution different from x? if there is a solution x̂ ranked
higher than x? that is feasible with respect to the rounded coefficients. By round-
ing, we change each coefficient by at most 2n−b. Thus, wT x̂− bwcTb x̂ ≤ 2n−bn.

We can conclude that we find x̂ instead of x? only if the loser gap Λ is at most
2n−bn, which happens with a probability of at most 2n−bφ1/nn2 (or 2n−bφ1/nn3

if the ranking is not monotone). ut

With this preparation, we can prove the main result of this section.

Theorem 6.1. If a binary decision problem can be solved in pseudo-polynomial
time, then it is in Smoothed-P.

Proof. We have to show that the running time of the algorithm sketched above,
which uses the pseudo-polynomial algorithm as a black box, fulfills Theorem 2.3.

If b bits for each coefficient are used, the running time of the pseudo-poly-
nomial algorithm is bounded from above by O((n2b)c) for some constant c. (Even
the total running time summed over all iterations up to b bits being revealed is
bounded by O((n2b)c), because it is dominated by the last iteration.)

The probability that more than time t = O((n2b)c) is needed is bounded
from above by 2n−bφ1/nn2 according to Lemma E.5. We can rewrite this as

2n−bφ1/nn2 = n22−b
(
2n

2

φ
)1/n

=
n3

O(t1/c)
·
(
2n

2

φ
)1/n ≤ n3

O(t1/c)
· 2n

2

φ.

The last inequality holds because φ ≥ 2−n
2

. The theorem is proved because this
tail bound for the running time is strong enough according to Theorem 2.3. ut

Examples of problems in Smoothed-P are the decision problems associated
with the following NP-hard optimization problems:

– knapsack, where the goal is to find a subset of a given collection of items
that maximizes the profit while obeying a budget for its weight;

– constrained shortest path, where the goal is to find a path of minimum length
that obeys a certain a budget;

– constrained minimum-weight spanning tree.

21

These problems can be solved in pseudo-polynomial time using dynamic pro-
gramming, even if we insist on a lexicographically maximal solution (as we have
to for Lemma E.4).

Let us now discuss some extensions of the model. We have restricted ourselves
to deterministic pseudo-polynomial algorithms, which yield smoothed polyno-
mial complexity. These deterministic algorithms can be replaced without any
complication by randomized errorless algorithms that have expected pseudo-
polynomial running time.

So far, we have not explicitly dealt with constraints of the form “wTx ≥ t”.
But they can be treated in the same way as “wTx ≤ t”, except that winner and
loser gap change their roles. Furthermore, we did not include the case that coeffi-
cients can be positive or negative. This yields additional technical difficulties (we
have to round more carefully and take both winner and loser gap into account),
but we decided to restrict ourselves to the simpler form with non-negative co-
efficients for the sake of clarity. Moreover, we have not considered the case of
multiple linear constraints [3, Section 2.3] for the same reason. Finally, Röglin
and Vöcking [20] have extended the smoothed analysis framework to integer
programming. We believe that the same can be done for our discrete setting.

22

