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Abstract. Our main result is an efficient construction of a hitting set
generator against the class of polynomials of degree di in the i-th vari-
able. The seed length of this generator is log D + Õ(log1/2 D). Here,
log D =

P
i log(di+1) is a lower bound on the seed length of any hitting

set generator against this class. Our construction is the first to achieve
asymptotically optimal seed length for every choice of the parameters di.
In fact, we present a nearly linear time construction with this asymptotic
guarantee. Furthermore, our results extend to classes of polynomials pa-
rameterized by upper bounds on the number of nonzero terms in each
variable. Underlying our constructions is a general and novel framework
that exploits the product structure common to the classes of polynomials
we consider. This framework allows us to obtain efficient and asymptot-
ically optimal hitting set generators from primitives that need not be
optimal or efficient by themselves.
As our main corollary, we obtain the first blackbox polynomial identity
tests with an asymptotically optimal randomness consumption.

1 Introduction

Consider a class of polynomials F in n variables over some field K. A hitting
set against F is a set of points H ⊆ Kn such that no polynomial in F vanishes
on all points in H. To give an example of a hitting set, consider the class F of
nonzero polynomials of degree at most di in the i-th variable. If we fix arbitrary
sets Si ⊆ K of size di + 1 assuming |K| > di, then the set H = S1 × · · · × Sn is
a hitting set against F of size D =

∏
i(di + 1) (see, for instance, [1]). It is easy

to argue that the size of this hitting set is optimal. But even for di = 1 the set
is so large that we would like to have an efficient implicit representation of it.
This would typically be a be a function called hitting set generator computable
by a small circuit on log |S| inputs that serve the purpose of a random seed. A
second observation is that there are polynomials in F vanishing on all except
a single point in H. Here, it would be more desirable if the non-roots of any
polynomial in F had high density in H. This requirement is met by the well-
known Schwartz-Zippel Lemma [2–4]: If we replace each Si by a set of 2ndi points
(rather than di+1 points), then any polynomial in F vanishes on at most half of
the points in H. However, the size of H increased to (2n)n ·

∏
di. Even in terms

of log |S| this increase in size is only of lower order for large enough degree di. It



is natural to ask whether this increase in size is inherent. It turns out the answer
is negative. In this paper, we present efficient constructions of hitting sets for
which the quantity log |S| is asymptotically optimal, but at the same time our
hitting sets will have high density in the above sense.

The main motivation for our work is the closely related problem of polynomial
identity testing. Here, we assume we are given access to a polynomial in some
implicit representation. The problem is to distinguish the case where the given
polynomial is identically zero from the case where the polynomial is a member of
some class F ⊆ K[x1, . . . , xn]. Provided with a hitting set generator against F ,
this can be done by picking a random seed and testing if the given polynomial
is zero at the point produced by the generator. While the zero polynomial will
always be zero on this point, any polynomial in F will evaluate to a nonzero value
with high probability given that the hitting set has high density. Notice, these
steps only require blackbox access to the polynomial. That is, we need not make
any structural assumption about the input representation of the polynomial.

The study of polynomial identity testing was initiated by the work of DeMillo,
Lipton, Schwartz and Zippel [2–4]. Many interesting problems have since turned
out to reduce to checking polynomial identities [5–11]. Similarly, several results
in complexity theory [12–15] involve hitting set generators against polynomials
as a subroutine. What remained wide open after this initial work is the question
how much randomness is required in testing polynomial identities.

There were two successful approaches: One is giving deterministic identity
tests for restricted classes of arithmetic circuits [16–19]. As it turned out, test-
ing general arithmetic circuits for identity in even subexponential deterministic
time is linked to circuit lower bounds [20, 16]. The other approach has been to
minimize the seed length of hitting set generators against more general classes of
polynomials [21–24]. In this work we continue the study of the latter problem. In
this case, there is a natural lower bound on the number of random bits required
that we are trying to match: Suppose a class of polynomials F ⊆ K[x1, . . . , xn]
contains a linear space W ⊆ F ∪ {0} of dimension at least d. Then, a dimen-
sion argument [22] shows that any hitting set generator against F requires seed
length at least r ≥ log(d/ε).

Let us now precisely define the notion of a hitting set generator.

Definition 1. A hitting set generator of density α > 0 against a class of poly-
nomials F is a function G : {0, 1}r → Kn such that for all f ∈ F we have
Pr[f(G(z)) 6= 0] ≥ α where the seed z ∈ {0, 1}r is drawn uniformly at random.

We are interested in uniform constructions of hitting set generators. That is, we
will consider classes of polynomials F (t) given by a parameter t and we want
to have a construction algorithm which on input of t and ε > 0 constructs a
circuit that computes a hitting set generator G of density 1 − ε against F (t).
The running time of this algorithm will be measured in terms of the description
length |t|; the runtime also serves as an upper bound on the size of the circuit.



1.1 Our Result

We introduce a general framework for obtaining efficient and asymptotically op-
timal constructions from primitives that need not be optimal or even efficient
by themselves. Our framework requires the target class of polynomials to ex-
hibit a typical product structure that we formalize. We exploit this structure by
working with product operations on hitting set generators. Crucial primitives
in our framework are hitting set generators which besides their seed have an
additional source of randomness, called random advice. Random advice captures
excess in randomness that can be shared when computing the product of two
generators. Our constructions will generally be the product of several generators
each working on one subset of the variables. A simple approximation algorithm
determines a partition of the variables so as to minimize seed length, runtime or
the required field size of our construction.

We say a polynomial f has degree d = (d1, . . . , dn), if di is an upper bound
on the degree of the i-th variable in f . We let F (d) ⊆ K[x1, . . . , xn] denote the
class of nonzero degree-d polynomials in n variables. We use the abbreviation
D =

∏n
i=1(di + 1) throughout our work.

Theorem 1. Given a degree d, we can efficiently construct a hitting set gen-
erator G of density 1/2 against F (d) over any field of characteristic zero such
that the seed length of G is logD +O(

√
logD · log logD).

Since the quantity D is the dimension of the space F (d) ∪ {0}, the dimension
lower bound implies that the seed length is asymptotically optimal for the entire
family of parameters d1, . . . , dn where n, di ∈ IN. Our result also holds over large
enough finite fields. Here, the requirement on the size of the field is roughly the
same as in the Schwartz-Zippel Lemma. It is worth noting, over fields of char-
acteristic zero, our construction does not depend on the size of the coefficients
of the polynomials; the dependence on each degree di is only logarithmic.

We also show how to obtain a nearly linear time construction at the cost
of slightly more but still asymptotically optimal seed length. More generally
we have the trade-off between runtime O(log1+δD) and seed length logD +
O(log1−δD · log logD) where δ ∈ (0, 1/2). A similar trade-off holds for the re-
quired size of finite fields.

Sparse Polynomials. We extend our work to classes of polynomials where we are
given an upper bound on the number of nonzero terms. Our notion of sparsity is
analogous to the previous notion of degree. We say a polynomial f has sparsity
m = (m1, . . . ,mn), if f has at most mi nonzero terms when written as a uni-
variate polynomial in the i-th variable. For a tuple m = (m1, . . . ,mn) and an
integer d ∈ IN, we define F (m, d) as the class of nonzero sparsity-m polynomials
of total degree at most d. Henceforth, let M =

∏n
i=1mi.

Theorem 2. Given sparsity m and degree d ≤M , we can efficiently construct
a hitting set generator G of density 1/2 against F (m, d) over any large enough
finite field, say, |K| ≥ poly(Mnd), such that the seed length of G is logM +
O(
√

logM · log d · log logM).



The lower bound shows that any hitting set generator of positive density against
F (m, d) has seed length at least logM , provided that d is sufficiently large, i.e.,
d ≥

∑n
i=1mi. Hence, the seed length of our generator is asymptotically optimal

whenever log d = o(logM/(log logM)c) for some absolute constant c.

Theorem 3. Given δ > 0, m, and d, we can construct in time polynomial in
n log d · log1/δM a hitting set generator G of density 1/2 against F (m, d) over
any field of characteristic zero such that the seed length of G is (1 + δ) logM +
O(log logM + log log d).

In the above theorem, for log log d = o(logM), the seed length can be made arbi-
trarily close in a multiplicative sense to the lower bound logM at the expense of
a higher running time. This trade-off is comparable to the time-approximation
trade-off in polynomial time approximation schemes (PTAS). The theorem is
weaker than our other results in that it gives only quasi-polynomial time con-
structions of generators with asymptotically optimal seed length. However, in
contrast to all previously known constructions against F (m, d), the dependence
of the seed length on the total degree is not logarithmic but doubly-logarithmic.
We obtain this exponential improvement by combining Descartes’ Rule of Signs
with an improved version of a reduction in [23].

1.2 Previous Work

The Schwartz-Zippel Lemma gives a generator against F (d) of seed length
logD + n log n which is asymptotically optimal for large degree, i.e., logD =
ω(n log n). Only recently, Bogdanov [24] obtained improvements in the case
where the total degree d of the polynomials is much smaller than the num-
ber of variables n, e.g., d = O(log n). Several results are concerned with the
case where logD is comparable to n. Chen and Kao [21] achieve the seed length∑n
i=1dlog(di + 1)e. Their construction works only for polynomials with integer

coefficients and has some dependence on the size of those coefficients. Lewin and
Vadhan [22] generalize the techniques of Chen and Kao to fields of positive char-
acteristic. While these upper bounds are as good as logD for some configurations
of the parameters, they come arbitrarily close to logD+n in general. As we think
of logD = Θ(n), this is not asymptotically optimal. In fact, speaking in terms of
the size of hitting sets, this is a multiplicative excess of order 2n. Furthermore,
both constructions have a polynomial runtime dependence on each degree di. As
soon as a single degree di is superpolynomial in n, their algorithms are not effi-
cient. Notice, this range of di is natural even if logD = O(n). Small arithmetic
circuits can compute polynomials of very high degree in a single variable.

In the arithmetic circuit model, Agrawal and Biswas [10] give a polynomial
identity test that uses logD random bits. However, in this case we have no lower
bound. In particular, if P = coRP, then there is a deterministic polynomial time
arithmetic circuit identity test [4, 25]. However, a particular tool introduced in
their work turns out to give us hitting set generators of the optimal seed length
logD over finite fields. This tool will be used and discussed later. We will see



how to achieve asymptotically the same seed length over significantly smaller
finite fields (that is, |K| > Do(1) as opposed to |K| > D).

When it comes to sparse polynomials, Klivans and Spielman [23] construct
a hitting set generator of seed length O(log(mnd)) against the class of n-variate
polynomials of total degree d and at most m nonzero terms. This is better than
previous work when logm = o(n log d). Although we use techniques from this
work, our results are strictly speaking incomparable to those of Klivans and
Spielman, since we consider a different class of “sparse” polynomials. However,
we can think of the quantity M =

∏
mi as some approximation of the number

of nonzero terms m. Notice that always M ≥ m and in general M can be strictly
larger than m. The polynomial 1 + x1 · · ·xn has only two nonzero terms, but
mi = 2 for all i ∈ [n] and thus M = 2n. In general, we may assume M ≥ 2n,
since all variables with mi = 1 can be fixed to an arbitrary nonzero constant.

Below we compare our results to the previous work in terms of the nor-
malized size of the hitting set that we can efficiently represent and the time
it takes to compute the implicit representation itself (neglecting constants and
polylogarithmic factors). The density is fixed to be a constant, say, 1/2. We put
q = log |K| when K is finite.

Size/D Runtime Source
char(K) = 0 char(K) > 0

nn log D log D Schwartz-Zippel [4, 3, 2]

2n poly(nd) poly(dq) Chen-Kao, Lewin-Vadhan [21, 22]

1 2O(logD) poly(q log D)
for |K| ≥ D

Kronecker substitution [10]

D1/ log1/2D poly(log D) — This work, Thm. 1

Do(1) log D
poly(q log D)

for |K| ≥ Do(1) This work, cf. Thm. 5

Size/M

d ·Mc poly(log M · log d) poly(q log M) Klivans-Spielman [23]

log d ·Mδ poly(log1/δ M · log d) — This work, Thm. 2

d ·M
log1/2 d

log1/2 M — poly(q · log M) This work, Thm. 3

2 Direct Products, Shared Advice, and Balanced Factors

In this section we give the technical exposition of our framework. It consists of
three parts, product operations on hitting set generators and classes of polyno-
mials, the notion of random advice, and an algorithmic approach working with
these tools.

Definition 2 (Direct product). For two generators G1 : {0, 1}r1 → Kn1 and
G2 : {0, 1}r2 → Kn2 , we define the direct product G1 ⊗ G2 : {0, 1}r1+r2 →
Kn1+n2 to be the function defined by G1 ⊗G2 (z1z2) = (G1(z1), G2(z2)).

Clearly, if both G1 and G2 can be constructed efficiently, then so can the product
G1 ⊗G2.



Now, suppose we have two hitting set generators with high density against
two classes F1 and F2, respectively. We want to identify a large class of polyno-
mials F1F2 against which the direct product still has high density.

Definition 3 (Schwartz-Zippel product). Let F1 ⊆ K[x1] and F2 ⊆ K[x2]
be two classes of polynomials on disjoint sets of variables x1 and x2, respectively.
Let ni = |xi|. We define the Schwartz-Zippel product F1F2 to be the set of
polynomials f ∈ K[x1,x2] such that f as a polynomial in x2 has a coefficient
g ∈ K[x1] satisfying the following two properties: (1) g is a member of F1, and
(2) for every a1 ∈ Kn1 with g(a1) 6= 0 ∈ K, the polynomial f(a1,x2) ∈ K[x2]
is a member of F2.

Intuitively, this is the same product structure required in the well-known proof
of the Schwartz-Zippel Lemma. As desired, the next lemma is an immediate
consequence of the definition.

Lemma 1. Let G1 and G2 be two generators, and let F1 ⊆ K[x1] and F2 ⊆
K[x2] be two classes of polynomials. Suppose that G1 has density α1 against F1

and G2 has density α2 against F2. Then, the direct product G1⊗G2 has density
α1α2 against the Schwartz-Zippel product F1F2.

We introduce hitting set generators with an additional source of randomness,
called random advice.

Definition 4 (Advised generator). We call a function G : {0, 1}a×{0, 1}r →
Kn an advised generator with seed length r(G) := r and advice length a(G) :=
a. We say an advised generator G has quality 1 − ε against a class F of poly-
nomials, if the generator G(y, ·) has density 1 − ε/2 against F with probability
1− ε/2 for a randomly chosen string y ∈ {0, 1}a. Formally,

Pry∈{0,1}a

(
∀f ∈ F. Prz∈{0,1}r [f(G(y, z)) 6= 0] ≥ 1− ε

2

)
≥ 1− ε

2 .

We define the advice-less generator Ḡ : {0, 1}a+r → Kn corresponding to G to
be the function defined by Ḡ(yz) = G(y, z). Here yz denotes the string obtained
from y and z by concatenation.

Fact 4. If G has quality α against F , then Ḡ has density α against F .

Definition 5 (Shared advice product). For two advised generators
G1 : {0, 1}a1 × {0, 1}r1 → Kn1 and G2 : {0, 1}a2 × {0, 1}r2 → Kn2 with
a = max{a1, a2}, we define the shared-advice product G1 ⊗ G2 : {0, 1}a ×
{0, 1}r1+r2 → Kn1+n2 to be the function defined by G1 ⊗ G2 (y, z1z2) =
(G1(y, z1), G2(y, z2)). Here we assume that Gi ignores all but the first ai ad-
vice bits.

We can compute the shared-advice product at a moderate loss of quality.

Lemma 2. Let {Gi}i∈[k] be a set of advised generators, and let {Fi}i∈[k] be a
set of classes of polynomials. Suppose the generator Gi has quality 1− ε against
Fi. Then, the shared-advice product G =

⊗
iGi has quality 1 − kε against the

Schwartz-Zippel product
∏
i∈[k] Fi.



Proof. With probability 1 − kε/2, each generator Gi(y, ·) has density 1 − ε/2
against Fi. Condition on this event. By Lemma 1, the direct product G(y, ·) =⊗

iGi(y, ·) has density (1− ε/2)k > 1− kε/2 against
∏
i Fi.

Balanced Factors. The previous discussion gives rise to the following construc-
tion approach. Recall, our goal is a hitting set generator against some class of
polynomials F ⊆ K[x1, . . . , xn]. In a first step we identify classes F1, . . . , Fk such
that F is contained in the Schwartz-Zippel product

∏
i∈[k] Fi. We think of these

classes Fi as factors of F . This step induces a partition of the variables into k
parts. We will design advised generators Gi against each Fi, each working on
one subset of the variables. Then we combine them into one generator G using
the shared advice product. Our final candidate is the seedless generator Ḡ.

A large number of factors k decreases the relative amount of advice. On the
other hand, the quality of G suffers as k grows. Varying over k gives rise to
interesting trade-offs. But once we fix k we want to determine a partition that
minimizes the seed length of our construction.

So, suppose we can associate a weight with each variable such that the total
weight of a set of variables corresponds to the length of advice needed by a
generator Gi operating on this set of variables. Since we can share advice, the
goal is to find a partition of the variables that distributes the weight equally
among all parts. For technical reasons, we can allow that parts containing only
a single variable have large weight.

Lemma 3. Given a positive integer k and a polynomial ring K[x] with non-
negative weights w : [n] → IR≥0 on the variables, we can efficiently compute a
partition (S1, . . . , Sk) of the set S = [n] of variables such that each part Si either
contains only a single variable or else the total weight of the variables in Si is
at most w(Si) ≤ 4w(S)/k.

Proof. There are at most bk/2c variables with w(i) > 2w(S)/k. Each of these
variables is put in a singleton set. The remaining variables are distributed among
the at least dk/2e remaining sets using a greedy algorithm that aims to minimize
the maximum weight of a set.

3 Polynomials of a Given Degree

We begin with the basic building blocks in our construction. For univariate
polynomials we will need a simple generator that picks a random field element
from a large enough range. We define the trivial generator with seed length r to
be the generator G : {0, 1}r → K that outputs a field element that corresponds
in fixed way to its seed. For example, if char(K) = 0 or char(K) ≥ 2r, G would
output the field element corresponding to the binary number encoded by its
seed, that is, G(z0 · · · zr−1) =

∑r−1
i=0 zi(1 + 1)i ∈ K.

Proposition 1. The trivial generator G with seed length log(d/ε) + O(1) has
density 1− ε against the class of univariate polynomials over a field K of degree
at most d, provided that K has size at least d/ε.



We also need the Kronecker substitution as introduced by [10] for our parame-
ters.

Lemma 4. Let d = (d1, . . . , dn) ∈ INn and define the Kronecker substitution as
kr(X) = (XD1 , . . . , XDn), where Di =

∏
j<i(dj + 1). Then, for every f ∈ F (d),

we have that f ′ = f(kr(X)) ∈ K[X] is a univariate polynomial of degree at
most D− 1 such that any two distinct monomials w and w′ in f map to distinct
monomials in f ′. In particular, f ′ is not identically zero in K[X].

Remark 1. Over finite fields of cardinality at least D/ε, this lemma immediately
gives us a generator G of density 1 − ε and optimal seed length. We simply
combine the previous lemma with Proposition 1. More precisely, we generate
points of the form kr(s) where the element s is drawn uniformly at random
from a subset of the field of size D/ε.

Over fields of characteristic zero the bit size of kr(s) is at least D which is
exponential in the desired runtime of our algorithm. It turns out, we can reduce
the points of the hitting set modulo a (logD)-bit prime number. However, this
step seems to require at least logD additional random bits. Indeed, any method
of computing an N -bit prime number in time poly(N) that we are aware of
requires Ω(N) random bits. Computing an N -bit prime number efficiently with
o(N) random bits (or no random bits at all) is an intriguing open problem.
Cramer’s conjecture about prime gaps would imply such an algorithm. However,
even if we assume the Generalized Riemann Hypothesis, the gaps between N -bit
primes are only known to be bounded by 2N/2 · poly(N). And even if this were
a density result, it would only imply an algorithm using N/2 random bits.

Surprisingly, we can circumvent this problem by modeling the additional
O(logD) random bits as random advice. This way, we can exploit our frame-
work in order to reduce the random advice to o(logD) bits and thus achieve an
asymptotically optimal result.

Proposition 2. Let K be of characteristic zero. For any degree d and any ε > 0
we can construct a hitting set generator G of quality 1− ε against F (d) in time
polynomial in log(D/ε). Furthermore, r(G) = log(D/ε) + O(1) and a(G) =
O(log(D/ε)).

Proof (Sketch). First, the generator G uses its advice string y in order to obtain
a number p = p(y) > 2D/ε such that Pry[p(y) is prime] > 1 − ε/2. This can
be done efficiently with an advice string of length O(log(D/ε)). An efficient
algorithm for generating an N -bit prime number with high probability does not
need more than O(N+log(1/ε)) random bits Second, G uses its seed to choose a
random field element s from the range R = {1, . . . , d2D/εe}. Finally, G outputs
the point b which is obtained by reducing kr(s) component-wise modulo p. We
claim whenever p(y) is a prime number, then G(y, ·) has density 1 − ε against
F (d). This can be shown by arguing since f is nonzero, we have that f(kr(X))
vanishes on at most D − 1 in R points modulo p. The contrapositive of this
argument follows from a standard argument involving a Vandermonde matrix
modulo p in which we observe that f(kr(s)) = f(b) mod p.



We proceed to prove a more general version of Theorem 1.

Theorem 5. Let d = (d1, . . . , dn) and ε > 0. Then, for any k ∈ {1, . . . , n}, we
can efficiently construct a hitting set generator of density 1− ε against F (d) and
seed length log(D/ε) + O(k log(k/ε)) + O(log(D/ε)/k). The construction works
for any field of characteristic zero and any finite field of size at least 2

ε ·k ·D
4/k.

Proof. Define the weight of the variable xi as w(i) = log(di + 1). Apply Bal-
anced Factors (Lemma 3) with the given choice of k so as to obtain a partition
of the coordinates [n] into sets S1, . . . , Sk. Let di denote the restriction of d
to the coordinates in Si. For each i ∈ [k] we will construct an advised genera-
tor Gi against F (di) of quality 1 − ε/2k. If |Si| = 1, then we obtain Gi from
Proposition 1. In this case a(Gi) = 0. Whenever |Si| > 1, we obtain Gi from
Proposition 2 in case K is of characteristic zero. Consider the advised gener-
ator G =

⊗
i∈[k]Gi. This is a generator against the Schwartz-Zippel product∏

i∈[k] F (di) which is a superset of F (d). Its quality follows from Lemma 2. No-

tice, r(G) =
∑k
i=1 r(Gi) =

∑k
i=1 log(Di)+O(k log(k/ε)) where Di =

∏
j∈Si

(dj+
1). But,

∑
i log(Di) = logD. Hence, r(G) = logD+O(k log(k/ε)). On the other

hand, a(G) = maxiO(log(Di) + log(1/ε)). But the Balanced Factors Lemma
guarantees log(Di) = w(Si) ≤ 4w(S)/k = 4 logD/k. Therefore, we obtain the
desired generator by combining seed and advice of G (see Fact 4). If K is a
finite field, we obtain the above Gi directly via 1. The required field size is
maxi 2kDi/ε ≤ 2kD4/k/ε.

For k = d
√

logD/ log(1/ε)e we obtain Theorem 1.

Nearly Linear Time. The larger we choose k the more efficient is our construc-
tion. Notice the trivial generators from Proposition 1 can be constructed in time
linear in their seed length. But to construct a generator from Proposition 2 we
need more time. Let us say time N̄ c for some constant c > 1 where N̄ is the length
of the input parameters. In the context of the above theorem, let N = logD.
For simplicity fix the density to be some constant. The Balanced Factors Lemma
guarantees that the seed and advice length of any advised generator used in our
construction is bounded by O(N/k). Hence, the time it takes to construct all
advice generators will be no more than O(k · (N/k)c) = O(N c/kc−1). As we
set k = N/(logN)c+1, the over all construction time becomes Õ(N). The seed
length remains within (1 + o(1))OPT. More generally, setting k = N1−δ for
any δ ∈ (0, 1/2) gives us the trade-off between time N1+(c−1)δ and seed length
N + Õ(N1−δ). It is easy to see that the exponent c need not be larger than 2.
The prime number required in the proof of Lemma 4 can be computed once in
cubic (e.g., using the Rabin-Miller primality test) and passed on to all gener-
ators. Provided with this prime number, each generator can be constructed in
quadratic time.



4 Polynomials with a Given Number of Nonzero Terms

Let K be a sufficiently large finite field. In this section, we give an efficient con-
struction of hitting set generators against F (m, d) with asymptotically optimal
seed length, provided log d is sufficiently smaller than logM . In the previous
section, our basic building blocks were generators against the target class F (d)
that have optimal seed length, but require some amount of advice. For the tar-
get class F (m, d), however, we do not have advised generators with optimal seed
length, even if we allow an arbitrary amount of advice. Instead we will start from
generators that have a close to optimal seed length against certain subclasses
F (w,W ) ⊆ F (m, d). Specifically, for a set of monomials W and a monomial
w ∈W , we let F (w,W ) be the set of polynomials over K that are in the linear
span of W but not in the span of W \ {w}. In other words, F (w,W ) consists of
all polynomials f ∈ K[x] such that w has a nonzero coefficient in f and all other
monomials of f are in W . Note that all polynomials in F (w,W ) are nonzero.

Proposition 3. Given m, d, and ε > 0, we can efficiently construct an advised
generator G with r(G) = logM + O(log nd/ε) and a(G) = O(log(dM/ε)) such
that G has quality 1− ε against every class F (w,W ) ⊆ F (m, d).

The proposition crucially relies on a multivariate to univariate reduction intro-
duced by Klivans and Spielman [23]. This reduction maps a point b ∈ K to
the tuple (bbk

i−1cp)i∈[n] where p is prime, k is a random number and bki−1cp
denotes the remainder of ki−1 modulo p. In our case, p and k will be generated
independently using the advice string (so that the substitution depends on the
advice). The point b is simply drawn from a large enough range using the seed.
Intuitively, the proposition then asserts that for every choice of w and W , most
of the advice strings y give a generator G(y, ·) that is dense against F (w,W ).
Precisely, this will happen if the reduction induced by the advice string is “isolat-
ing” with respect to w and W . That is, no distinct monomial w′ collides with w
under the given reduction. But Klivans and Spielman showed that this isolation
behavior occurs with high probability.

We remark that that possibly no single advice string above yields a generator
that is dense against F (m, d).

Using Proposition 3 as our basic building block, our construction against
F (m, d) essentially works as follows. First, we compute a balanced partition
(S1, . . . , Sk) of the coordinates [n] (Lemma 3). Here we use w(j) = logmj as
the weight function. Then, from the above proposition, we obtain generators
Gi that have high quality against any class F (wi,Wi) contained in F (mi, d),
where mi is the restriction of m to the coordinates in Si. Since the partition
(Si)i∈[k] was balanced, the shared-advice product G =

⊗
iGi has only advice

length about 1
k logM . On the other hand, the seed length of G is close to the

lower bound logM . We claim that the advice-less generator Ḡ corresponding to
G has high density against F (m, d). By Lemma 2, G has high quality against
any product

∏
i F (wi,Wi) with F (wi,Wi) ⊆ F (mi, d). This implies that Ḡ has

high density against the union of all such products. Finally, Ḡ has high density



against F (m, d), because every polynomial in F (m, d) is contained in one of the
products

∏
i F (wi,Wi).

The details of the proof of Proposition 3 and Theorem 3 follow along the
lines of our discussion and are omitted from this extended abstract. They will
appear in the full version of the paper.

Over Fields of Characteristic Zero. Let K be a field of characteristic zero. Lipton
and Vishnoi [26] point out the fact that a univariate polynomial with at most m
nonzero terms has at most m rational roots over K (a consequence of Descartes’
Rule of Signs).

Proposition 4. For every ε > 0, the trivial generator with seed length log(m/ε)+
O(1) has density 1 − ε against the class of univariate polynomials with at most
m nonzero terms.

Let F (W ) denote the set of nonzero polynomials in the linear span of W .

Proposition 5. Given ε > 0, m, and d, we can construct an advised generator
G with r(G) = logM/ε+O(1) and a(G) = O(log(Mn/ε · log d)) in time 2a(G) =
poly(Mn/ε · log d) such that G has quality 1 − ε against every class F (W ) ⊆
F (m, d).

As in Proposition 3, the above generator first reduces the multivariate polyno-
mial to a univariate one using the same substitution. Then it applies the genera-
tor from Proposition 4 against the resulting univariate polynomial. In contrast to
the trivial generator, which was used in Proposition 3, this generator has no de-
pendence on the degree of the polynomial. Another difference to Proposition 3 is
that the construction time depends polynomially on the magnitude of the prime
p number which is used to reduce the degrees in the substitution (bbk

i−1cp)i∈[n].
This is because over characteristic zero, the magnitude of the points blows up
exponentially. In the case of sparse polynomials we do not know how to reduce
the bit size of the points as we did in Proposition 2.

The doubly logarithmic dependence on d in the advice length is achieved by
analyzing the effect of using a uniformly random prime in the substitution. This
analysis improves the one given in [23] exponentially with respect to d. It is the
main technical ingredient for the proof of Proposition 5. The proof of Theorem 3
follows our general framework and uses the previous two propositions as building
blocks. Both proofs are omitted from this extended abstract.
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