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Abstract

Given a complete edge-weighted graph G, we present a polynomial
time algorithm to compute a degree-four-bounded spanning Eulerian sub-
graph of 2G that has at most 1.5 times the weight of an optimal TSP
solution of G. Based on this algorithm and a novel use of orientations
in graphs, we obtain a (3β/4 + 3β2/4)-approximation algorithm for TSP
with β-relaxed triangle inequality (β-TSP), where β ≥ 1. A graph G
is an instance of β-TSP, if it is a complete graph with edge weights
c : E(G) → Q≥0 that are restricted as follows. For each triple of vertices
u, v, w ∈ V (G), c({u, v}) ≤ β(c({u,w}) + c({w, v})).

1 Introduction

In the traveling salesman problem we are given a complete edge-weighted graph
and we have to find a minimum-weight Hamiltonian tour, i. e., a tour that visits
each vertex exactly once. This classical problem has been studied extensively
and in many variations. Most of the variations concern restrictions of the weight
function. One of the most natural restrictions is to assume that the weight
function is a metric. Intuitively this means that we are allowed to take the
shortest path to the next vertex to visit, even if this means to visit some of the
vertices more than once.

Despite intensive research for more than 30 years, Christofides’ algorithm is
still the best known approximation algorithm for the metric traveling salesman
problem and its approximation ratio is 1.5 [1]. For similar settings, however, a
recent fast development has started. For graphic metrics—metrics obtained by
taking the lengths of the shortest paths in an unweighted graph as weights—a
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sequence of improvements was published within a short time frame, with the
currently best approximation algorithm of Sebő and Vygen which achieves an
approximation ratio of 1.4 [2, 3, 4, 5].

Instead of restricting the metric, in this paper we consider a relaxation.
We use a relaxation parameter β ≥ 1 and require that the input instance is
a complete graph G where the non-negative weight function c : E(G) → Q≥0
satisfies the relaxed triangle inequality c({u,w}) ≤ β(c({u, v}) + c({v, w})) for
any three vertices u, v, w ∈ V (G).

For approximation algorithms, the relaxed triangle inequality was introduced
by Bandelt, Crama, and Spieksma [6]. This type of parameterization also pro-
vides a suitable type of relaxation in the context of stability of approximation [7]
and our result fits into this framework.

The β-relaxed version of metric TSP (β-TSP) was first considered by An-
dreae and Bandelt [8] who presented a 1.5β2 + 0.5β approximation algorithm.
Subsequently Andreae improved the result to β+β2 [9]. The next development
was due to Böckenhauer et al. [7]. They obtained a 1.5β2-approximation algo-
rithm, which is better than the previous algorithms for 1 < β < 2. Bender and
Chekuri [10] independently obtained a 4β approximation algorithm, which is
better than the algorithm of Andreae for β > 3.

1.1 Results and Overview of Techniques

We provide an improved approximation algorithm for β-TSP.

Theorem 1.1. There is a polynomial time (3β/4 + 3β2/4)-approximation al-
gorithm for β-TSP.

The approximation ratio of our algorithm outperforms the ratios provided
by Andreae [9] and by Böckenhauer et al. [7] for all values of β. The 4β approx-
imation algorithm of Bender and Chekuri [10] still is better than our algorithm
for β > 13/3 ≈ 4.33. To obtain our result we first use the matroid version by
Király et al. [11] of a bounded degree spanning tree result of Singh and Lau [12],
combined with special b-matchings that respect parities of vertex degrees. We
obtain a degree-4-bounded spanning Eulerian subgraph in 2G for any complete
graph G with edge weights c : E(G)→ Q such that the weight of the computed
graph is at most 1.5 times the weight of an optimal TSP solution. Finally,
we introduce an orientation technique that provides a cactus graph with useful
properties such that the weight of shortcuts within the graph is restricted when
constructing the TSP solution. One key insight is that we obtain two disjoint
sets of edges such that we have to consider the factor β2 only for the smaller of
the two sets.

2 Preliminaries

All graphs in this paper are allowed to have multiple edges. For convenience
of notation, however, we do not distinguish between multi-sets and sets. We
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handle multiple edges of a graph as separate edges. This way there may be
cycles of length two. (We define a cycle to be a simple cycle, i. e., vertices may
not be visited twice.)

Given a graph G, V (G) and E(G) are its set of vertices and its set of edges.
For a set of edges F ⊆ E(G), we write c(F ) as shorthand for

∑
e∈F c(e). Simi-

larly, for a graph G we write c(G) as shorthand for c(E(G)). A block of a graph
G is a maximal two-vertex-connected subgraph.

A b-matching of a graph G is a subgraph G′ of G with possible additional
multiplicities of edges where each vertex has a degree of at most b. We identify
a b-matching with its characteristic vector x of edges, that is, for each edge
e ∈ E(G), x has an entry xe ∈ N0 and xe ≥ 1 if and only if e ∈ E(G′).

Let G = (V,E) be an undirected graph and let M be the V × E incidence
matrix of G. Let l ≤ m and a ≤ b be integer vectors in NE0 resp. NV0 and let
Sodd and Seven be disjoint subsets of V .

Consider the following constraints that impose restrictions on the character-
istic vector of the b-matching x ∈ NE0 .

(i) l ≤ x ≤m (iii) (Mx)v is odd if v ∈ Sodd

(ii) a ≤Mx ≤ b (iv) (Mx)v is even if v ∈ Seven (1)

These constraints specify (i) bounds on the multiplicity of edges inG, (ii) bounds
on the degrees of the vertices in G, and (iii,iv) the parities of degrees for specific
vertices (since Mx is the vector of vertex degrees).

We slightly abuse notation and, whenever the meaning is clear from the
context, we associate an integer i with the corresponding vector (i, i, . . . , i).
Note that for an integer b′, (1) specifies a b′-matching if we set l = 0, m = ∞,
a = 0, b = b′, and Sodd = Seven = ∅. For our results we need specific b-
matchings that we will specify by giving values to the parameters of (1).

The following theorem is Theorem 36.5 in Schrijver’s book [13]. (Here, we
use a simplified setting. In the original theorem a more general class of graphs
can be used.)

Theorem 2.1 (Edmonds, Johnson [14]). For any c ∈ QE, an integer vector x
maximizing cTx over (1) can be found in strongly polynomial time (if it exists).

Given a graph G, a 1-tree is a subgraph of G composed of a spanning tree on
V (G)\{v1} for some v1 ∈ V (G) and two edges incident to v1. If G is a complete
graph, then for each choice of v1 there is a matroid M such that the 1-trees of
G are the bases of M [15]. We are interested in 1-trees where additionally the
vertices have degree restrictions.

For a vector b of vertex degrees, a 1-tree T of G is degree b bounded if the
degree of each vertex v ∈ V (T ) is at most bv. The following theorem follows
directly from Király et al. [11] who showed a more general result for matroids.1

(We run their algorithm for each choice of v1.)

1Note that by guessing two consecutive edges and applying straightforward graph modifi-
cations, we could also use the predecessor result on bounded degree spanning trees [12].
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Theorem 2.2. Given a complete graph G with edge weights c : E(G) → Q
and a vector b of upper bounds on the vertex degrees, there is polynomial time
algorithm that computes a 1-tree T in G such that (a) T is degree (b+1) bounded
and (b) c(T ) ≤ c(T ′) for all degree b bounded 1-trees T ′ in G.

For our algorithm we need cactus graphs. Here we use the following definition
of cacti which strictly speaking specifies the subclass of 2-edge-connected cacti.

Definition 2.3 (Cactus). A graph G is a cactus if it is 2-edge connected and
all blocks are cycles, i. e., no two cycles share an edge.

Given a graph G, 2G is the graph where each edge of G is doubled. A graph
G′ is a spanning Eulerian subgraph of 2G if V (G) = V (G′), G′ is a connected
subgraph of 2G, and each vertex of G′ has even degree.

3 The Algorithm Algβ

Before we proceed to the main result, we show an intermediate observation.
With the preparation in the preliminaries, the following theorem is not hard.
It is, however, of independent interest given the importance of Eulerian graphs.
Note that the weight function is neither required to be metric nor to be non-
negative.

Theorem 3.1. Let G be a complete graph with edge weights c : E(G) → Q.
There is a polynomial time algorithm that computes a degree-4-bounded spanning
Eulerian subgraph of 2G such that its total weight is at most 1.5 times the weight
of an optimal TSP solution in G.

Proof. We combine Theorem 2.1 with Theorem 2.2. To obtain a degree-4-
bounded Eulerian subgraph we compute a degree-3-bounded 1-tree τ and add
a b-matching with the following parameters of (1). We set l = 0, m = 1, a = 0,
and b = 2. Then we set Sodd to be the set of all vertices of odd degree in τ ,
and Seven the set of all remaining vertices.

This way, all odd degree vertices in τ obtain a degree increased by exactly
one and all remaining vertices (of degree two) either stay unchanged or become
degree-4-vertices. By Theorem 2.1 we obtain an optimal b-matching M with
the specified parameters in strongly polynomial time.

Due to Theorem 2.2 we can, in polynomial time, obtain a degree-3-bounded
1-tree of at most the weight of an optimal TSP solution, because any TSP so-
lution is a degree-2-bounded 1-tree. For the remaining argument we use that,
similar to the matchings in Christofides’ algorithm, any TSP solution is com-
posed of two edge-disjoint b-matchings obeying the specified restrictions. A
minimum weight solution thus has at most half the weight of an optimal TSP
solution.

In order to state the algorithm, we need a few more definitions. We use
bi-directed arcs, where we mark the tails with + and the heads with −. Thus
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for an arc with two heads u and v, we write {u−, v−}. For an arc with tail u
and head v, we write (u, v) instead of {u+, v−}. In the context of this paper,
there are no arcs {u+, v+}. Sometimes, we are interested in the vertices of arcs,
independent of directions. In these cases, we refer to arcs as edges.

Let A be the arc set and V the vertex set of a bi-directed graph D. Let
v ∈ V be a vertex of D. The in-degree of v is deg−(v) = |{a ∈ A : ∃u ∈ V, a =
(u, v) or a = {u−, v−}}|. Similarly, deg+(v) = |{a ∈ A : ∃u ∈ V, a = (v, u)}|.

We design an algorithm Algβ that relies on graph transformations specified
by the following rule.

Rule 1. Let D be a bi-directed graph and let v be a vertex given as input such
that deg+(v) = 2. Let w 6= w′ be the vertices such that the arcs (v, w), (v, w′)
are in D. We remove both (v, w) and (v, w′) from D and add the arc {w−, w′−}.

We also need the reverse operation of Rule 1. If we obtained {w−, w′−} due
to an operation of Rule 1 to v, to reverse Rule 1 at {w−, w′−} means that we
remove {w−, w′−} and add the two arcs (v, w), (v, w′).

Let G′ be a bi-directed graph. Suppose we are given a set of vertices S ⊂
V (G′) and vertices w,w′ ∈ S, v ∈ V (G′) \ S with the following properties: (i)
there are no arcs of G′ between S and V (G′)\S; (ii) each connected component
of G′ is a cactus; (iii) w and w′ are connected by an arc {w−, w′−} in G′,
obtained due to an application of Rule 1 to v. Then we say that {w−, w′−} is
an entry site of the subgraph of G′ induced by S. Let C be the block of G′ that
contains v. Then after reversing the application of Rule 1 at {w−, w′−}, v is an
exit point of C (but not of any other block).

Fig. 1(c),(d) shows an example of an entry site and an exit point. The reason
to consider entry sites and exit points is to create a cactus such that its blocks
form a specific hierarchy that allows us to exclude long (and therefore expensive)
shortcuts when constructing a Hamiltonian tour from the cactus.

3.1 Proof of Theorem 1.1

We show that Algβ is a polynomial time (3β/4 + 3β2/4)-approximation algo-
rithm for β-TSP.

Let G be an instance of β-TSP, where c : E(G) → Q≥0 is the cost func-
tion of G. We have to verify that Algβ indeed computes a Hamiltonian tour
(see Fig. 1). Observe that due to the relaxed triangle inequality, G is a com-
plete graph; therefore we can apply Theorem 3.1 to obtain a degree-4-bounded
spanning Eulerian subgraph H of 2G.

Since H is Eulerian, we can efficiently find the required Eulerian orientation
in H by forming cycles of length two from parallel edges and iteratively adding
further cycles. (The requirement to orient parallel edges in opposite directions
prevents loops in the subsequent step and therefore simplifies the analysis.) We
use the following property of H, observed by Euler.

Claim 3.2. Let S ⊆ V (H). Then |δ+(S)| = |δ−(S)|, where δ+(S) and δ−(S)
are the sets of arcs from S to V (H) \ S resp. from V (H) \ S to S.
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Algorithm: Algβ

Input : An instance G of β-TSP.
Output: A Hamiltonian tour in G.
Apply Theorem 3.1 to obtain a degree-4-bounded spanning Eulerian
subgraph H of 2G;
Find an Eulerian orientation in H where parallel edges are oriented in
opposite directions;
Apply Rule 1 to all vertices of degree 4 in H. Let H ′ be the resulting
graph ; // The graph H ′ is a collection of disjoint cycles.

Choose a cycle Ĉ in H ′ and set K = Ĉ; // K is a cactus.

while V (K) 6= V (G) do
Determine an entry site a of K;
Reverse the application of Rule 1 at a;
Update K to include the additional cycle as a new block;

end

Let Ĉ ′ be the block in K that contains V (Ĉ);
Let K ′ be K with all orientations of edges removed;

for each block C of K ′ except Ĉ ′ do // Reorient the cactus

Let v be the exit point of C (w. r. t. K);
Let e, e′ be the two edges incident to v in C such that c(e) ≤ c(e′);
Orient the edges along C in K ′, starting with e from v;

end

Orient the edges along Ĉ ′ in K ′ (in arbitrary direction);
Apply Rule 1 to all vertices of degree 4 in K ′;
Return the resulting tour K ′′ (without orientations).

In particular, Claim 3.2 implies that for each degree-4 vertex v ofH, deg−(v) =
deg+(v) = 2. Note that applying Rule 1 to v transforms v into a degree-2 vertex
and that the in- and out-degrees of all other vertices stay unchanged. Therefore
we can apply Rule 1 to every degree-4 vertex of H and afterwards each vertex
has a degree of exactly 2, i. e., H ′ is a collection of cycles.

Next we show that K is always a cactus, and that in each run of the while
loop we can find an entry site a. Initially K is a cycle and therefore a cactus.
Reversing Rule 1 at an entry site does the following. The cycle C of K that
contains the entry site a obtains an additional vertex v. The cycle in H ′ con-
taining v stays unchanged, but now it shares v with K. Both increasing the
length of C and attaching a cycle to K that only shares a single vertex with K
preserve the properties of cactus graphs.

Claim 3.3. Before each run of the while loop, K has an entry site.

Proof. Since H is a connected graph, due to Claim 3.2 there are arcs from
V (H ′) \ V (K) to V (K) in H. Let â = (v, w) be one of these arcs. Since we
only removed arcs from H by applying Rule 1, the degree of v in H is 4 and
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(a) (b)

Ĉ

a

(c)

v

C̃

(d)

(e)

v Ĉ ′

C

e′

e

(f)

Ĉ ′

(g) (h)

Figure 1: An example of intermediate graphs in Algβ . (a) The graph H. (b)
The Eulerian orientation in H. (c) The graph H ′ before the while loop with
entry site a of Ĉ. (d) The graph K after one iteration of the while loop. The
vertex v is the exit point of C̃. (e) The graph K after the while loop. (f) The
graph K ′ after one iteration of the for loop where v is the exit point of C. (g)
The graph K ′ after the for loop. (h) The graph K ′′.

there is a second arc â′ = (v, w′) in H that is not in H ′. We conclude that
there is an arc {w−, w′−} in K. Since there are no arcs in E(H ′) between V (K)
and V (H) \ V (K) and K is a cactus, we conclude that {w−, w′−} is an entry
site.

By Claim 3.3, the while loop finds an entry site in each run and terminates
with V (K) = V (G). We now show that in the for loop, the vertex v is well
defined.
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Claim 3.4. After the while loop, each cycle of K except Ĉ ′ has exactly one exit
point.

Proof. The cactus K is formed by reversing applications of Rule 1 in order to
add cycles. For each cycle C that is added to K in the while loop, there are
vertices w,w′ ∈ V (K) and v ∈ V (C) such that reversing the application of
Rule 1 at {w−, w′−} introduces the arcs (v, w) and (v, w′). This means that v
is a cut vertex of the transformed K and thus an exit point of C. Each cycle
C ′ of H ′ except Ĉ is added to K exactly once during the while loop and there
is exactly one cycle C ′′ of K with V (C ′) ⊆ V (C ′′). We conclude that C ′′ has
exactly one exit point.

Therefore the for loop terminates. We now analyze the last step of Algβ .

Claim 3.5. K ′′ is a Hamiltonian tour.

Proof. Let j be the number of degree-4 vertices in K ′ after the for loop. We
observe that the order of applications of Rule 1 does not change the resulting
graph. Therefore we may assign indices 1, 2, . . . , j to the degree-4 vertices of
K ′ such that Rule 1 is applied iteratively in order of the indices. Let Ki be the
obtained graph after i iterations. Since applications of Rule 1 do not increase
degrees of vertices, each Ki is degree-4-bounded. We now show by induction
that the following invariant is true. For each i ≥ 0, Ki is a cactus and for each
degree-4 vertex v of Ki, there are arcs (v, u), (v, u′) with u and u′ in different
blocks. Intuitively, the invariant ensures that each Ki is connected and that we
can continue to apply Rule 1 until we have formed a Hamiltonian tour.

Initially, the invariant is true since K0 = K ′ is a cactus and we oriented each
cycle of K ′ in one direction. Now suppose that 1 ≤ i ≤ j and that the invariant
is true for Ki−1. Let v′ be the vertex such that Ki is obtained by applying
Rule 1 to v′ in Ki−1. By the invariant, there are two blocks C,C ′ of Ki−1 and
vertices w,w′ such that w ∈ V (C), w′ ∈ V (C ′), and (v′, w), (v′, w′) ∈ E(Ki−1).
Then C,C ′ are edge disjoint cycles and thus removing both (v′, w) and (v′, w′)
leaves a connected graph. The new arc {w−, w′−} closes a cycle with vertex set
V (C)∪V (C ′), which implies that Ki is 2-edge connected. We conclude that Ki

is a cactus, since an edge contained in two different cycles of Ki would also be
contained in two different cycles of Ki−1.

Each degree-4 vertex v 6= v′ of Ki−1 is also a cut vertex in Ki since removing
v would leave two components only one of which containing the arcs changed
by applying Rule 1. In particular, the property that there are arcs (v, u), (v, u′)
with u and u′ in different blocks of Ki did not change. Thus the invariant also
holds for Ki.

We conclude that K ′′ is a cactus with only vertices of degree 2 and therefore
a Hamiltonian tour.

To see that Algβ runs in polynomial time, observe that each separate step
can be done in polynomial time. The iterated application of Rule 1 in the
beginning and the end is done at most once for each vertex. Similarly, the while
loop and the for loop are run at most linearly often.
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We finish the proof by analyzing the approximation ratio of Algβ . We aim
to partition the edges of H into paths such that for each edge e of K ′′ there is
a path in H between the ends of e. To avoid ambiguity, in the following we fix
K ′ to be the version at the end of Algβ .

We define a family P ′ of classes P ′e ⊆ E(H), for each e ∈ E(K ′). If e ∈ E(H)
we set P ′e = {e}. Otherwise, if e /∈ E(H), e must have been obtained by applying
Rule 1, replacing two edges e′, e′′ and we set P ′e = {e′, e′′}.

We claim that P ′ is a partition of E(H). Let us fix an edge e′ ∈ E(H).
Then either e′ ∈ E(K ′) and thus P ′e′ = {e′}, or there is an e′′ such that e′, e′′

were replaced by e. But then e ∈ E(K ′) since during the while loop, eventually
e = {u−, v−} for two vertices u, v and thus Rule 1 cannot replace e. Therefore
P ′e = {e′, e′′}. Since during the while loop e′′ also cannot have two heads,
e′′ ∈ E(H). Furthermore, e′ uniquely determines its class in P ′ and therefore it
cannot be in two different classes.

Analogously, we define a family P ′′ of classes P ′′e ⊆ E(K ′), for each e ∈
E(K ′′). If e ∈ K ′, we set P ′′e = {e}. Otherwise, if e /∈ E(K ′), e must have been
obtained by applying Rule 1, replacing two edges e′, e′′ and we set P ′′e = {e′, e′′}.
With the same arguments as for P ′, P ′′ is a partition of E(K ′).

We now define a partition P of E(H) by combining P ′ and P ′′. For each
edge e ∈ E(K ′′), we define the class Pe of P as

⋃
e′∈P ′′

e
P ′e′ .

Let Ẽ be the set of all edges that in some iteration of the for loop of Algβ
were denoted by e. Analogously, let Ẽ′ be the set of all edges that in some
iteration of the for loop of Algβ were denoted by e′.

Claim 3.6. For each f ∈ E(K ′′) \ E(K ′), there are vertices s, v, t such that
P ′′f = {{s, v}, {v, t}} with {s, v} ∈ E(H), {v, t} ∈ Ẽ, and f = {s, t}.

Proof. Since f /∈ K ′, f was obtained by applying Rule 1 to a vertex v. Therefore
P ′′f = {f̂ , e} ⊆ E(K ′) where f̂ and e have v as common vertex (see Fig. 2). Due
to the orientation of K ′ obtained during the for loop and in the subsequent step,
there are two blocks C ′ 6= C ′′ of K ′ such that for each of them, there is exactly
one arc from v into the block. These two arcs are f̂ , e, and we may assume that
f̂ ∈ E(C ′) and e ∈ E(C ′′).

For one of the two blocks, v is its exit point and by renaming we assume
that C ′′ is that block. Therefore in K (after the while loop), the two arcs

f̂ , ĝ ∈ E(C ′) incident to v have tails at v. In particular, f̂ was not obtained
from an application of Rule 1 since the application only introduces arcs with
two heads and thus f̂ ∈ E(H). Due to the orientation in the for loop of Algβ ,

we conclude that e ∈ Ẽ. The claim follows by fixing s, t such that f̂ = {s, v}
and e = {v, t}.

We now show that P partitions E(H) into short paths.

Claim 3.7. For each f = {s, t} ∈ E(K ′′), the edges in Pf form a path between
s and t of length at most three in H.
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Proof. Let us first assume that f ∈ E(K ′) Then either f ∈ E(H) or Pf =
{f ′, f ′′}, where f ′ = {s, v} and f ′′ = {v, t} for some vertex v. Since f ′, f ′′ ∈
E(H), the claim follows.

Otherwise, if f /∈ E(K ′), there are edges f̂ , e ∈ P ′′f where f̂ = {s, v} and
e = {v, t} for some vertex v. By Claim 3.6 we can rename the vertices and edges

such that f̂ ∈ E(H) and e ∈ Ẽ (see Fig. 2). Then either e ∈ E(H) or there is
a vertex u such that P ′e = {{v, u}, {u, t}} with {v, u}, {u, t} ∈ E(H). In both
cases the claim follows.

We now analyze the edge weights relative to c(H). For edges not in H we
have to consider a factor that is bounded due to the relaxed triangle inequality.
Let us fix an edge f ∈ E(K ′′). We distinguish the sizes of Pf .

If |Pf | = 1, f ∈ E(H) and thus there is no factor to be considered.

If |Pf | = 2, Pf = {f ′, f ′′} for two adjacent edges f ′, f ′′ ∈ E(H) and by the
relaxed triangle inequality, c(f) ≤ β(c(f ′) + c(f ′′)).

If |Pf | = 3, by Claim 3.6 we have that c(f) ≤ β · (c(f̂) + c(e)) for an f̂ ∈ E(H)

and an e ∈ Ẽ with P ′′f = {f̂ , e} (see Fig. 2). We define Π ⊆ Ẽ × Ẽ′ such
that (ê, ê′) ∈ Π if ê and ê′ were compared in the for loop of Algβ . Observe
that since in the for loop each cycle is oriented only once, Π assigns each edge
from E to exactly one edge of E′ and vice versa. Let e′ ∈ Ẽ′ be the edge such
that (e, e′) ∈ Π. We have that c(e) ≤ β · min{c(P ′e), c(P ′e′)}, since otherwise

c(e′) < c(e). Therefore, we obtain c(f) ≤ βc(f̂) + β2 min{c(P ′e), c(P ′e′)}.
By Claim 3.7, we do not have to consider |Pf | > 3 and therefore there are no
further cases.

In order to compute the overall cost of the solution, we define

M := {ê ∈ Ẽ : (ê, ê′) ∈ Π and c(P ′ê) ≤ c(P ′ê′)}
∪ {ê ∈ Ẽ′ : (ê′, ê) ∈ Π and c(P ′ê) < c(P ′ê′)},

and M ′ := (Ẽ ∪ Ẽ′) \M . Since we aim for edges in E(H), MH :=
⋃
g∈M P ′g,

M ′H :=
⋃
g′∈M ′ P ′g′ and the remaining edges are R := E(H) \ (MH ∪M ′H).

Since P is a partition of E(H), the overall cost c(K ′′) is bounded from
above by βc(R) + βc(M ′H) + β2c(MH). Since c(MH) ≤ c(M ′H), we obtain
that c(K ′′) ≤ βc(H)/2 + β2c(H)/2 ≤ (3β/4 + 3β2/4) · opt, where opt is the
weight of an optimal β-TSP solution in G and the last inequality follows from
Theorem 3.1.

4 Conclusion

We have seen that in a complete edge-weighted graph we can obtain a degree-4-
bounded Eulerian graph that has at most 1.5 times the weight of an optimal TSP
solution. This result might allow for improvement. However, by setting β = 1
an improvement would directly imply an improvement over the approximation
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Figure 2: (a) A degree 4 vertex v in K after the while loop (solid arcs), where

f ∈ E(K ′′) is the arc that replaces e and f̂ when applying Rule 1 to v. (b)
The same vertex v and arcs from H (solid) with the orientation before applying
Rule 1 the first time. We have e ∈ Ẽ and e′ ∈ Ẽ′, i. e., c(e) ≤ c(e′) and

c(f) ≤ β(c(f̂) + c(e)). Furthermore, P ′e = {e1, e2}, P ′e′ = {e′1, e′2}, P ′′f = {f̂ , e},
and Pf = {f̂ , e1, e2}. Therefore c(e) ≤ βc(P ′e) and c(e) ≤ c(e′) ≤ βc(P ′e′).
Possibly c(P ′e′) < c(P ′e), which implies e′ ∈M , e ∈M ′.

ratio of 1.5 of the metric traveling salesman problem and thus it would require
valuable new insights.

The main result shows an approximability of the TSP with relaxed triangle
inequality that is better than all previous results as long as the value of β is
smaller than 13/3. The most likely improvement of our result is for the term
3β2/4, as it is not linear in β. We conjecture the following.

Conjecture 4.1. There is a polynomial time (1.5β)-approximation algorithm
for β-TSP.

Such a result seems likely as the 4β-approximation algorithm does not in-
clude a factor β2 and the factor β2 in our result is only required in specific cases.
Thus both proving and disproving the conjecture would lead to interesting in-
sights.
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