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1 Simple lower bounds and gaps

Lower bounds

The hierarchy theorems of the previous chapter assure that there
is, e.g., a language L ∈ DTime(n6) that is not in DTime(n3). But
this language is not natural.a But, for instance, we do not know
how to show that 3SAT /∈ DTime(n3). (Even worse, we do not know
whether this is true.) The best we can show is that 3SAT cannot be
decided by a O(n1.81) time bounded and simultaneously no(1) space
bounded deterministic Turing machine.

aThis, of course, depends on your interpretation of “natural” . . .

In this chapter, we prove some simple lower bounds. The bounds in
this section will be shown for natural problems. Furthermore, these bounds
are unconditional. While showing the NP-hardness of some problem can be
viewed as a lower bound, this bound relies on the assumption that P 6= NP.
However, the bounds in this chapter will be rather weak.

1.1 A logarithmic space bound

Let LEN = {anbn | n ∈ N}. LEN is the language of all words that consists of a
sequence of as followed by a sequence of b of equal length. This language is
one of the examples for a context-free language that is not regular. We will
show that LEN can be decided with logarithmic space and that this amount
of space is also necessary. The first part is easy.

Exercise 1.1 Prove: LEN ∈ DSpace(log).

A small configuration of a Turing machine M consists of the current
state, the content of the work tapes, and the head positions of the work
tapes. In contrast to a configuration, we neglect the position of the head on
the input tape and the input itself. Since we only consider space bounds,
we can assume that M has only one work tape (beside the input tape).

Exercise 1.2 Let M be an s space bounded 1-tape Turing machine described
by (Q,Σ,Γ, δ, q0, Qacc). Prove that the number of small configurations on
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4 1. Simple lower bounds and gaps

inputs of length m is at most

|Q| · |Γ|s(m) · (s(m) + 2).

If s = o(log), then the number of small configurations of M on inputs of
length m = 2n is < n for large enough n by the previous exercise.

Assume that there is an s space bounded deterministic 1-tape Turing ma-
chine M with s = o(log) and L(M) = LEN. We consider an input x = apbn

with p ≥ n and n large enough such that the number of small configurations
is < n.

Excursus: Onesided versus twosided infinite tapes

In the “Theoretical Computer Science” lecture, we assumed that the work tape
of a Turing machine is twosided infinite. Sometimes proofs get a little easier if we
assume that the work tapes are just onesided infinite. The left end of the tape is
marked by a special symbol $ that the Turing machine is not allowed to change
and whenever it reads the $, it has to go to the right. To the right, the work tapes
are infinite.

Exercise 1.3 Show that every Turing machine M with twosided infinite work tapes
can be simulated by a Turing machine M ′ with (the same number of) onesided
infinite work tapes. If M is t time and s space bounded, then M ′ is O(t) time and
O(s) space bounded. (Hint: “Fold” each tape in the middle and store the two halves
on two tracks.)

We also assumed that an extra input tape is always twosided infinite. The
Turing machine can leave the input and read plenty of blanks written on the tape
(but never change them). But we can also prevent the Turing machine from leaving
the input on the input tape as follows: Whenever the old Turing machine enters
one of the two blanks next to the input, say the one on the lefthand side, the new
Turing machine does not move its head. It has a counter on an additional work
tape that is increased for every step on the input tape to the left and decreased for
every step on the input tape to the right. If the counter ever reaches zero, then the
new Turing machine moves its head on the first symbol on the input and goes on as
normal. How much space does the counter need? No more than O(s(n)), the space
used by the old Turing machine. With such a counter we can count up to cs(n),
which is larger than the number of configurations of the old machine. If the old
machine would stay for more steps on the blanks of the input tape, then it would
be in an infinite loop and the new Turing machine can stop and reject. The time
complexity at a first glance goes up by a factor of s(n), since increasing the counter
might take this long. There is amortized analysis but the Turing machine might
be nasty and always move back and forth between two adjacent cells that causes
the counter to be decreased and increased in such a way that the carry affects all
positions of the counter. But there are clever redundant counters that avoid this
behavior.

We assume in the following that the input tape of M is onesided infinite
and the beginning of the input is marked by an extra symbol $.
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An excursion of M is a sequence of configurations C0 `M C1 `M . . . `M
Cr such that the head of the input tape in C0 and in Cr are on the $ or
on the first b of x and the head is on an a in all other configurations. An
excursion is small if in C0 and Cr, the heads are on the same symbol. It is
large if the heads are on different symbols.

Lemma 1.1 Let E be an excursion of M on x = anbn and E′ be an ex-
cursion of M on x′ = an+n!bn. If the first configuration of E and E′ have
the same corresponding small configuration and the head of the input tape is
on the same symbol, then the last configuration of E and E′ have the same
corresponding small configuration and the head of the input tape is on the
same symbol.

Proof. If E is small, then E′ equals E. Thus, the assertion of the theorem
is trivial.

Let E (and E′) be large. Assume that the head starts on the $. The
other case is treated symmetrically. Since there are < n small configurations,
there must be two positions 1 ≤ i < j ≤ n in the first n symbols of x such
that the small configurations S are the same when M first visits the cells in
position i and j of the input tape. But then for all positions i + k(j − i),
M must be in configuration S as long as the symbol in the cell i+ k(j − i)
is still an a. In particular, M on input x′ is in S when it reaches the cell
i + n!

j−i(j − i) = i + n!. But between position i and n on x and i + n! and
n + n!, M will also run through the same small configurations. Thus the
small configurations at the end of E and E′ are the same.

Theorem 1.2 LEN /∈ DSpace(o(log n)).

Proof. Assume that there is an s space bounded 1-tape Turing machine
M for LEN with s = o(log). Using Lemma 1.1, we can show by induction
that whenever the head on the input tape of M is on the $ or the first b
(and was on an a the step before) then on input x = anbn and x′ = an+n!bn,
M is in the same small configuration. If the Turing machine ends its last
excursion, then it will only compute on the a’s or on the b’s until it halts.
Since on both inputs x and x′, M was in the same small configuration, it will
be in the same small configurations until it halts. Thus M either accepts
both x and x′ or rejects both. In any case, we have a contradiction.

1.2 Quadratic time bound for 1-tape Turing machines

Let COPY = {w#w | w ∈ {a, b}∗}. We will show that COPY can be de-
cided in quadratic time on deterministic 1-tape Turing machines but not in
subquadratic time. Again, the first part is rather easy.
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Exercise 1.4 Show that COPY ∈ DTime1(n2). (Bonus: What about deter-
ministic 2-tape Turing machines?)

Let M be a t time bounded deterministic 1-tape Turing machine for
COPY. We will assume that M always halts on the end marker $.

Exercise 1.5 Show that the last assumption is not a real restriction.

Definition 1.3 A crossing sequence of M on input x at position i is the
sequence of the states of M when moving its head from cell i to i+1 or from
cell i+ 1 to i. We denote this sequence by CS(x, i)

If q is a state in an odd position of the crossing sequence, then M is
moving its head from the left to the right, if it is in an even position, it
moves from the right to the left.

Lemma 1.4 Let x = x1x2 and y = y1y2. If CS(x, |x1|) = CS(y, |y1|) then
x1x2 ∈ L(M) ⇐⇒ x1y2 ∈ L(M).

Proof. Since the crossing sequences are the same, M will behave the
same on the x1 part regardless whether there is x2 or y2 standing to the
right of it. Since M always halts on $, the claim follows.

Theorem 1.5 COPY /∈ DTime1(o(n2)).

Proof. Let M be a deterministic 1-tape Turing machine for COPY. We
consider inputs of the form x = w#w with w = w1w2 and |w1| = |w2| = n.
For all v 6= w2, CS(x, i) 6= CS(w1v#w1v, i) for all 2n + 1 ≤ i ≤ 3n by
Lemma 1.4, because otherwise, M would accept w1w2#w1v for some v 6= w2.

We have TimeM (x) =
∑

i≥0 |CS(x, i)| where |CS(x, i)| is the length of
the sequence. Thus

∑
w2∈{a,b}n

TimeM (w1w2#w1w2) ≥
∑
w2

3n∑
ν=2n+1

|CS(w1w2#w1w2, ν)|

=
3n∑

ν=2n+1

∑
w2

|CS(w1w2#w1w2, ν)|.

All the crossing sequences CS(w1w2#w1w2, ν) have to be pairwise distinct
for all w2 ∈ {a, b}n. Let ` be the average length of such a crossing sequence,
i.e.,

∑
w2
|CS(w1w2#w1w2, ν)| = 2n · `.

If ` is the average length of a crossing sequence, then at least half of the
crossing sequences have length ≤ 2`. There are at most (|Q|+ 1)2` crossing
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sequences of length ≤ 2`. Let c = |Q| + 1. Then c2` ≥ 2n/2. Thus ` ≥ c′n
for some appropriate constant c′. This yields

∑
w2

TimeM (w1w2#w1w2) ≥
3n∑

ν=2n+1

2n · c′n = c′ · 2n · n2.

For at least one w2,

TimeM (w1w2#w1w2) ≥ c′ · n2.

Exercise 1.6 Show for the complement of COPY, COPY ∈ NTime1(n log n).

1.3 A gap for deterministic space complexity

Definition 1.6 An extended crossing sequence of M on input x at position
i is the sequence of the small configurations of M when moving its head from
cell i to i+1 or from cell i+1 to i on the input tape. We denote this sequence
by ECS(x, i).

Theorem 1.7 DSpace(o(log log n)) = DSpace(O(1)).

Proof. Assume that there is a Turing machine M with space bound
s(n) := SpaceM (n) ∈ o(log log n)\O(1). We will show by contradiction that
such a machine cannot exists. This proves the theorem.

By Exercise 1.2, the number of small configurations on inputs of length
n is ≤ |Q| · |Γ|s(n) · (s(n) + 2). Since s is unbounded, the number of small
configurations can be bounded by cs(n) for large enough n, where c is some
constant depending on |Q| and |Γ|.

In an extended crossing sequence, no small configuration may appear
twice in the same direction. Otherwise, a (large) configuration of M would
appear twice in the computation of M and M would be in an infinite loop.
Thus, there are at most

(cs(n) + 1)2cs(n) ≤ 22ds(n)

different extended crossing sequences on inputs of length n, where d is some
constant. For large enough n0, s(n) ≤ d−1

2 · log log n for all n ≥ n0 and

therefore 22ds(n) < n/2 for all n ≥ n0.
Choose s0 such that s0 > max{s(n) | 0 ≤ n ≤ n0} and such that there is

an input x with SpaceM (x) = s0. Such an s0 exists because s is unbounded.
Now let x be a shortest input with s0 = SpaceM (x). Since the num-

ber of extended crossing sequences is < n/2 by the definition of s0 and n0,
there are three pairwise distinct positions i < j < k such that ECS(x, i) =
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ECS(x, j) = ECS(x, k). But now we can shorten the input by either glueing
the crossing sequences at positions i and j or positions j and k. On at least
one of the two new inputs, M will use s0 space, since any small configu-
ration on x appears in at least one of the shortened strings. But this is a
contradiction, since x was a shortest string.

Exercise 1.7 Let L = {bin(0)# bin(1)# . . .# bin(n) | n ∈ N}.

1. Show that L is not regular.

2. Show that L ∈ DSpace(log log n).



2 Space and time hierarchies

Hierarchies

Is more space more power? Is more time more power?
The answer is “yes” provided that the space and time bounds behave
well, that is, they shall be constructible.a

In the case of time “more” means “somewhat more” and not just “more”

(see Theorem 2.1).

aNon-constructible space and time bounds do not occur in reality. The first
one who shows me a book on algorithms that contains a nonconstructible space
or time bound gets a big bar of chocolate.

2.1 Universal Turing machines

The space and time hierarchy result will be shown via diagonalization. For
this diagonalization, we need to encode and simulate Turing machines, that
is, we need a Gödel numbering for Turing machines and a universal Turing
machine. While the existence of both follows in principle from the Gödel
numbering for WHILE programs, the universal WHILE programs, and the
equivalence of WHILE program and Turing machines, we give an explicit
construction here, since we need space and time bounds for the universal
Turing machine.

We want to encode Turing machines by words over {0, 1}∗. Let M
be a k-tape Turing machine described by (Q,Σ,Γ, δ, q1, Qacc). Let Q =
{q1, . . . , q|Q|}, Σ = {σ1, . . . , σ|Σ|}, Γ = {γ1, . . . , γ|Γ|}, andQacc = {qi1 , . . . , qif }.
We encode the fact that

δ(qi, γj1 , . . . , γjk) = (qi′ , γj′1 , . . . , γj′k , rh1 , . . . , rhk),

by
0i10j11 . . . 10jk10i

′
10j

′
11 . . . 10j

′
k102+rh11 . . . 102+rhk . (2.1)

We use a unary encoding here, because it is simpler to write down. Since
the size of the encoding will usually be constant, there is no point in using a
more compact but also more complicated encoding. The whole δ is encoded
by concatenating all the encodings in (2.1) separated by 11s. We call this
string enc(δ) Finally, we encode the whole M by

enc(M) = 0k110|Γ|110|Q|110i11 . . . 10if 11 enc(δ)1112(k+1)|Γ|. (2.2)

9



10 2. Space and time hierarchies

The 1s at the end make the encoding prefix-free. We have chosen that many
ones to ensure that the length of the encoding is at least 2(k + 1)|Γ|. This
is just a technical assumption that will spare us some case distinctions. If δ
is sufficiently large, this assumption is automatically fulfilled.

Note that this encoding is fairly arbitrary. We could choose any other
encoding that is “easy to decode” in the sense of the following theorem.

Theorem 2.1 There is a deterministic 1-tape Turing machine U such that
U on input 〈e, x〉1 computes M(x)2 where e is an encoding of a deterministic
Turing machine M as in (2.2). If M uses space s, then U uses space O(|e|·s).
For each step of M , U performs O(|e|2 · s) steps.

Proof. The Turing machine U uses the same technique as described in
the proof of Theorem 24.2 of the “Theoretical Computer Science” lecture
last term.

There is one problem to deal with: The size of the work alphabet depends
on the number of tapes. Since the number of tapes of M is not known a
priori, this is a problem. Even worse, we have to fix the work alphabet of
U , but the size of the work alphabet of the simulated machine may vary.
Therefore, we represent a symbol in

(γi1 , θ1, . . . , γik , θk) ∈ (Γ× {∗,�})k

by a string of the form

aaf(γi1)ag(θ1)a . . . af(γik)ag(θk)

where

f(γκ) = bκc|Γ|−κ and g(∗) = b, g(�) = c

and a, b, c are new symbols.
First, the Turing machine U brings the input x for M in the form de-

scribed above. U stores the state of M encoded by a sequence of 0s on a
separate track. To simulate a transition of M , U seeks the corresponding
entry in the encoding of the transition function of M by comparing each

1〈., .〉 denotes a pairing function. How the pairing function looks like usually does not
matter, as long as we can compute it in polynomial time and can recover e and x in
polynomial time, too. The easiest way is to take a new symbol, say #, and set 〈e, x〉 =
e#x. With this encoding, 〈a, 〈b, c〉〉 = 〈〈a, b〉, c〉 which can sometimes be a problem. The
encoding 〈e, x〉 = 0b10b2 . . . 0b`1ex, where b1 . . . b` is the binary expansion of |e|, has the
nice property that it does not use any new symbols but its length |e| + |x| + 2 log |e| + 1
is only slightly larger the sum of the lengths of e and x.

2In the “Theoretical Computer Science” lecture, we used the notation ϕM (x) to denote
the function computed by M . Now you got older and you are ready for sloppier notations.
From now on, M does not only denote the (deterministic) Turing machine M but also the
function computed by it with the convention that if M is deciding some language then
M(x) = 1 means M accepts x and M(x) = 0 means M rejects x.
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entry in e with the strings between the aas that are marked by a head. U
has to compare this symbol by symbol. There are ≤ |e| symbols to compare.
For each comparison, U might have to move its head over the whole content
of the tape, which is O(|e| · s) cells. Thus one transition of M is simulated
by O(|e|2 · s) steps of U .

Such a machine U is called universal for the class of deterministic Turing
machines.

Remark 2.2 Also U can be modified such that it also works for nondeter-
ministic Turing machines. U searches all the possible transitions in e, marks
them, and then chooses one nondeterministically.

2.2 Deterministic space hierarchy

The basic technique for our hierarchy theorems will be diagonalization, a
technique that you saw already in the “Theoretical Computer Science” lec-
ture. This time its usage is much more sophisticated.

Theorem 2.3 (Deterministic space hierarchy) Let s2(n) ≥ log n be a
space constructible function and s1(n) = o(s2(n)). Then

DSpace(s1) ( DSpace(s2).

Proof. Let U be the universal Turing machine from Theorem 2.1. We
will construct a Turing machine M that is s2 space bounded such that
L(M) /∈ DSpace(s1). On input y, M works as follows:

Input: y ∈ {0, 1}∗, interpreted as y = 〈e, x〉
Output: 0 if the Turing machine encoded by e accepts y, 1 otherwise

1. It first marks s2(|y|) cells on its tapes.

2. Let y = 〈e, x〉, where e only contains 0s and 1s. M checks whether e is
a valid coding of a deterministic Turing machine E. This can be done
in O(log |y|) space, since M only needs some counters. (M could also
just skip the checking and start simulating E. If M detects that e is
not a valid encoding it would just stop.)

3. M now simulates E on input y. To do this, M just behaves like U , the
only difference is that the input now is y and not x, as in Theorem 2.1.

4. On an extra tape, M counts the steps of U using a ternary counter
with s2(|y|) digits. (Note that we can mark s2(|y|) cells.)

5. If during this simulation, U leaves the marked space, then M rejects.

6. If E halts, then M halts. If E accepts, then M rejects and vice versa.
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7. If E makes more than 3s2(|y|) steps, then M halts and accepts.

Let L = L(M). We claim that L /∈ DSpace(s1). To see this, assume that
N is a s1 space bounded deterministic Turing machine with L(N) = L. It
is sufficient to consider a one-tape Turing machine N with extra input tape.
Let e be an encoding of N and let y = e#x for some sufficiently long x.

First assume that y ∈ L. We will show that in this case, N rejects y, a
contradiction. If y is in L, then M accepts y. But if M accepts, then either
the simulation of N terminated or N makes more than 3s2(|y|) steps. But
in the first case, N terminated and rejected by construction and we have
a contradiction. In the second case, note that N cannot make more than
cs1(|y|) · (s1(|y|) + 2) · (|y|+ 2) steps without entering an infinite loop. Thus
if 3s2(|y|) > cs1(|y|) · (s1(|y|) + 2) · (|y| + 2) then we get a contradiction, too.
But 3s2(|y|) > cs1(|y|) · (s1(|y|) + 2) · (|y|+ 2) is equivalent to log 3 · s2(|y|) >
log c·s1(|y|)+log(s1(|y|)+2)+log(|y|+2). This is fulfilled by assumption for
all long enough y, i.e., for long enough |x|. Thus we obtained a contradiction
again.

The possibility y /∈ L remains. We will show that now N accepts y, a
contradiction. If M rejects y, then M ran out of space or N terminated.
The second case is again easy. If the simulation of N terminated, then N
accepted because y /∈ L, a contradiction. We will next show that the first
case cannot happen. Since N is s1 space bounded, the simulation via U
needs space |e| · s1(|y|). But |e| · s1(|y|) ≤ s2(|y|) for sufficiently large |y|.
Thus this case cannot happen.

M is by construction s2 space bounded. This proves the theorem.

Exercise 2.1 Describe a log space bounded Turing machine that checks
whether the input is a correct encoding of a deterministic Turing machine.

2.3 Deterministic time hierarchy

Next, we do the same for time complexity classes. The result will not be as
nice as for space complexity, since the universal machine U is slower than
the machine that U simulates.

Theorem 2.4 (Deterministic time hierarchy) Let t2 be a constructible
function and t21 = o(t2). Then

DTime(t1) ( DTime(t2).

Proof. Let U be the universal Turing machine from Theorem 2.1. We
will construct a Turing machine M that is O(t2) time bounded such that
L(M) /∈ DTime(t1). On input y, M works as follows:

Input: y ∈ {0, 1}∗, interpreted as y = 〈e, x〉
Output: 0 if the Turing machine encoded by e accepts y, 1 otherwise
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1. Let y = e#x, where e only contains 0s and 1s. M checks whether e is
a valid coding of a deterministic Turing machine E.

2. M now simulates E on input y. To this this, M just behaves like U , the
only difference is that the input now is y and not x, as in Theorem 2.1.

3. M constructs t2(|y|) on an extra tape.

4. On an extra tape, M counts the steps of U using a binary counter.

5. If during this simulation, U makes more than t2(|y|) steps, then M
halts and accepts.

6. If E halts, then M halts. If E accepts, then M rejects and vice versa.

Let L = L(M). We claim that L /∈ DTime(t1). To see this, assume that
N is a t1 time bounded deterministic Turing machine with L(N) = L. Let
e be an encoding of N and let y = e#x for some sufficiently long x.

First assume that y ∈ L. We will show that in this case, N rejects y,
a contradiction. If y is in L, then M accepts y. But if M accepts, then
either N makes more than t2(|y|) steps or N halts. In the second case, M
accepted. But then N rejected. A contradiction. We next show that the
first case cannot happen. The simulation of N needs c · |e|2 · t21(|y|) many
steps for some constant c. But c · |e|2 · t21(|y|) ≤ t2(|y|) for sufficiently long
y by assumption. Thus this case cannot happen.

Next assume that y /∈ L. Then N terminates. But since M rejects, N
accepted. A contradiction.

By construction, the Turing machine M is O(t2) time bounded. Using
linear speed-up, we can get this down to t2 time bounded, if t2 = ω(n). If
t2 = O(n), then the theorem is trivial.

2.4 Remarks

The assumption t21 = o(t2) in the time hierarchy theorem is needed, since
the universal Turing machine U incurs an extra factor of t1 in the running
time when simulating.

Hennie and Stearns showed the following theorem.

Theorem 2.5 (Hennie & Stearns) Every t time and s space bounded k-
tape deterministic Turing machine can be simulated by an O(t log t) time
bounded and O(s) space bounded 2-tape Turing machine.

We do not give a proof here. Using this theorem, we proceed as follows.
On input e#x, M only simulates if e is a valid encoding of a 2-tape Turing
machine. In the proof, we will now take N to be a 2-tape Turing machine.
In this way, we can replace the assumption t21 = o(t2) by t1 log t1 = o(t2).
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Research Problem 2.1 Can the assumption t1 log t1 = o(t2) be further
weakened?

If the number of tapes is fixed, then one can obtain a tight time hierarchy.
Again we do not give a proof here.

Theorem 2.6 (Fürer) Let k ≥ 2, t2 time constructible, and t1 = o(t2).
Then

DTimek(t1) ( DTimek(t2).

We conclude with pointing out that the assumption that s2 and t2 are
constructible are really necessary.

Theorem 2.7 (Borodin’s gap theorem) Let g be a recursive function
N → N with g(n) ≥ n for all n. Then there are functions s, t : N → N with
s(n) ≥ n and t(n) ≥ n for all n with

DTime(g(t(n))) = DTime(t(n)),

DSpace(g(s(n))) = DSpace(s(n)).

Set for instance g(n) = 2n (or 22n or . . . ) and think for a minute how
unnatural non-constructible time or space bounds are.

2.5 Translation

Assume we showed that DTime(t1) ⊆ DTime(t2). In this section, we show
how to get other inclusions out of this for free via a technique called padding.

Theorem 2.8 Let t1, t2, and f be time constructible such that t1(n) ≥
(1 + ε)n, t2(n) ≥ (1 + ε)n, and f(n) ≥ n for all n for some ε > 0. If

DTime(t1(n)) ⊆ DTime(t2(n)),

then

DTime(t1(f(n))) ⊆ DTime(t2(f(n))).

Proof. Let L1 ∈ DTime(t1(f(n)) and let M1 be a t1(f(n)) time bounded
deterministic Turing machine for L1. Let % be a symbol that is not in Σ.

Let

L2 = {x%r |M1 accepts x in t1(|x|+ r) steps}.

Since t1 is time constructible, there is an O(t1) time bounded deterministic
Turing machine M2 that accepts L2. Using acceleration, we obtain L2 ∈
DTime(t1). By assumption, there is a t2 time bounded Turing machine M3

with L(M3) = L2.
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Finally, we construct a deterministic Turing machine M4 for L1 as fol-
lows: M4 on input x computes f(|x|) and appends f(|x|) − |x| symbols
% to the input. Thereafter, M4 simulates M3 for t2(f(|x|)) steps. M4

is O(f(n) + t2(f(n)) time bounded. Using linear speedup, we get L1 ∈
DTime(t2(f(n))). We have

x ∈ L(M4) ⇐⇒ M3 accepts x%f(|x|)−|x| in t2(f(|x|)) steps

⇐⇒ x%f(|x|)−|x| ∈ L2

⇐⇒ M1 accepts x in t1(f(|x|)) steps

⇐⇒ x ∈ L1.

Exercise 2.2 Show the following: Let s1, s2, and f be space constructible
such that s1(n) ≥ log n, s2(n) ≥ log n, and f(n) ≥ n for all n. If

DSpace(s1(n)) ⊆ DSpace(s2(n)),

then
DSpace(s1(f(n))) ⊆ DSpace(s2(f(n))).

(Hint: Mimic the proof above. If the space bounds are sublinear, then we
cannot explicitly pad with %s. We do this virtually using a counter counting
the added %s.)

Remark 2.9 While it is a nice exercise, the above result is not very mean-
ingful, since s1 cannot grow asymptotically faster than s2, since we have
a tight space hierarchy result. But—and this is the interesting part—the
proofs work word by word for nondeterministic Turing machines, too. One
can even “mix” determinism and nondeterminism as well as time and space
as long as the complexity measures on the left-hand side are the same and
on the right-hand side are the same.



3 Robust complexity classes

Complexity classes

Good complexity classes should have two properties:

1. They should characterizes important problems.

2. They should be robust under reasonable changes of the com-
putation model.

One such example is NP: There are an abundance of important NP-

complete problems and it is also robust: If we defined nondeterministic

WHILE programs or RAM machines, we would get the same class of prob-

lems.

Definition 3.1

L = DSpace(O(log n))

NL = NSpace(O(log n))

P =
⋃
i∈N

DTime(O(ni))

NP =
⋃
i∈N

NTime(O(ni))

PSPACE =
⋃
i∈N

DSpace(O(ni))

EXP =
⋃
i∈N

DTime(2O(ni))

NEXP =
⋃
i∈N

NTime(2O(ni)).

L and NL are classes of problems that can be decided with very few
space. Note that by Savitch’s theorem, NL ⊆ DSpace(log2 n). We will
also see in later lectures, that problems in L and also NL have efficient
parallel algorithms. P is the class of problems that are considered to be
feasible or tractable. NP characterizes many important optimization prob-
lems. PSPACE are the problems that can be decided with feasible space

16
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requirements. Note that by Savitch’s theorem, there is no point in defining
nondeterministic polynomial space. EXP is the smallest deterministic class
known to contain NP. And NEXP, well, NEXP is just NEXP.

We have

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP,

which follows from Theorems 25.9 and 25.10 of the “Theoretical Computer
Science” lecture. By the time and space hierarchy theorems, we know that
L ( PSPACE and P ( EXP. Thus, some of the inclusions above must
be strict. We conjecture that all of them are strict. By the translation
technique, L = P would imply PSPACE = EXP, etc.

3.1 Reduction and completeness

Let R be some set of functions Σ∗ → Σ∗. A language L′ is called R many
one reducible to another language L if there is some function f ∈ R (the
reduction) such that for all x ∈ Σ∗,

x ∈ L′ ⇐⇒ f(x) ∈ L.

Thus we can decide membership in L′ by deciding membership in L. Let C
be some complexity class. A language L is called C-hard with respect to R
many one reductions if for all L′ ∈ C, L′ is R many one reducible to L. L is
called C-complete if in addition, L ∈ C.

To be useful, reductions should fulfill two properties:

• The reduction should be weaker than the presumably harder one of
the two complexity classes we are comparing. Particularly, this means
that if L′ is R many one reducible to L and L ∈ C, then L′ should also
be in C, that is, C is closed under R many one reductions.

• The reduction should be transitive. In this case, if L′ is R many one
reducible to L and L′ is C-hard, then L is also C-hard.

The most popular kind of many one reductions are polynomial time many
one reductions, which are used to define NP-hardness. When Steve Cook
showed that Satisfiability is NP-complete, he did not use many-one polyno-
mial time reductions (and strictly speaking did not prove that Satisfiability
is NP-complete). The concept of many-one polynomial time reducibility
was introduced by Richard Karp. Steve Cook used a stronger (maybe one
would like to call it weaker) kind of reduction (but only formally; all his
reduction where “essentially” many-one), called Turing polynomial time re-
ductions. To define this kind of reductions, we need the notion of oracle
Turing machines.
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An oracle Turing machine M is a multitape Turing machine that in
addition to its regular work tape has a distinguished oracle tape which is
read/write. Furthermore, it has two distinguished states, a query state q?

and an answer state q !. Let f : Σ∗ → Σ∗ be some total function. M with
oracle f , denoted by Mf , works as follows: As long as Mf is not in q? it
works like a normal Turing machine. As soon as Mf enters q?, the content
of the oracle tape is replaced by f(y), where y is the previous content of
the oracle tape, and the head of the oracle tape is put on the first symbol
of f(y). Then Mf enters q !. The content of the other tapes and the other
head positions are not changed. Such an oracle query is counted as only one
time step. In other words, Mf may evaluate the function f at unit cost. All
the other notions, like acceptance or time complexity, are defined as before.
We can also have a language L as an oracle. In this case, we take f to be
the characteristic function χL of L. For brevity, we will write ML instead
of MχL .

Let again L,L′ ⊆ Σ∗. Now L′ is Turing reducible to L if there is a
deterministic oracle Turing machine R such that L′ = L(RL). Basically this
means that we can solve L′ deterministically if we have oracle access to L.
Many-one reductions can be viewed as a special type of Turing reductions
where we can only query once at the end of the computation and have to
return the same answer as the oracle. To be meaningful, the machine R
should be time bounded or space bounded. If, for instance, R is polynomial
time bounded, then we speak of polynomial time Turing reducibility.

Popular reductions

• polynomial time many one reductions (denoted by L′ ≤P L),

• polynomial time Turing reductions (L′ ≤T
P L),

• logspace many one reductions (L′ ≤log L).

3.2 Co-classes

For a complexity class C, co-C denotes the set of all languages L ⊆ Σ∗

such that L̄ ∈ C. Deterministic complexity classes are usually closed under
complementation. For nondeterministic time complexity classes, it is a big
open problem whether a class equals its co-class, in particular, whether
NP = co-NP. For nondeterministic space complexity classes, this problem
is solved.

Theorem 3.2 (Immerman, Szelepcsényi) For every space constructible
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s(n) ≥ log n,
NSpace(s) = co-NSpace(s).

We postpone the prove of this theorem to the next chapter.

Exercise 3.1 Show that satisfiability is co-NP-hard under polynomial time
Turing reductions. What about polynomial time many one reductions?

Exercise 3.2 Show that if L is C-hard under R many-one reductions, then
L̄ is co-C-hard under R many-one reductions.



4 L and NL

4.1 Logarithmic space reductions

Logarithmic space many one reductions are the appropriate tool to investi-
gate the relation between L and NL (and also between NL and P).

Exercise 4.1 Let f and g be logarithmic space computable functions Σ∗ →
Σ∗. Then f ◦ g is also logarithmic space computable.

Corollary 4.1 ≤log is a transitive relation, i.e., L ≤log L
′ and L′ ≤log L

′′

implies L ≤log L
′′.

Proof. Assume that L ≤log L
′ and L′ ≤log L

′′. That means that there
are logarithmic space computable functions f and g such for all x,

x ∈ L ⇐⇒ f(x) ∈ L′

and for all y,

y ∈ L′ ⇐⇒ g(y) ∈ L′′.

Let h = g ◦ f . h is logarithmic space computable by Exercise 4.1. We have
for all x,

x ∈ L ⇐⇒ f(x) ∈ L′ ⇐⇒ g(f(x)) ∈ L′′.

Thus h is a many one reduction from L to L′′.

Lemma 4.2 Let L ≤log L
′.

1. If L′ ∈ L, then L ∈ L,

2. If L′ ∈ NL, then L ∈ NL,

3. If L′ ∈ P, then L ∈ P.

Proof. Let f be a logarithmic space many one time reduction from L to
L′. Let χL and χL′ be the characteristic functions of L and L′. We have
χL = χL′ ◦ f .

1. It is clear that a language is in L if and only if its characteristic function
is logarithmic space computable. By Exercise 4.1, χL′◦f is logarithmic
space computable. Thus, L ∈ L.

20
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2. This follows from a close inspection of the proof of Exercise 4.1. The
proof also works if the Turing machine for the “outer” Turing machine
is nondeterministic. (The outer Turing machine is the one that gets
the input f(x).)

3. Since f is logarithmic space computable, it is also polynomial time
computable, since a logarithmically space bounded deterministic Tur-
ing machine can make at most polynomially many steps. Thus χL′ ◦ f
is polynomial time computable, if χL′ is polynomial time computable.

Corollary 4.3 1. If L is NL-hard under logarithmic space many one re-
ductions and L ∈ L, then L = NL.

2. If L is P-hard under logarithmic space many one reductions and L ∈
NL, then NL = P.

Proof. We just show the first statement, the second one follows in a
similar fashion: Since L is NL-hard, L′ ≤log L for all L′ ∈ NL. But since
L ∈ L, L′ ∈ L, too, by Lemma 4.2. Since L′ was arbitrary, then claim follows.

4.2 s-t connectivity

NL is a syntactic class. A class C is called syntactic if we can check for a
given Turing machine M whether the resources that M uses are bounded as
described by C. (This is only an informal concept, not a definition!) While
we cannot check whether a Turing machine M is O(log n) space bounded,
we can make the Turing machine O(log n) space bounded by first marking
the appropriate number of cells and then simulate M . Whenever M leaves
the marked space, we reject.

Exercise 4.2 Prove that it is not decidable to check whether a Turing ma-
chine is log n space bounded.

Syntactic classes usually have generic complete problems. For NL, one
such problem is

Gen-NL = {e#x#1s | e is an encoding of a nondeterministic

Turing machine that accepts x in (log s)/|e| space.}

Exercise 4.3 Prove that Gen-NL is NL-complete.
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But there are also natural complete problems for NL. One of the most
important ones is CONN, the question whether there is a path from a given
node s to another given node t in a directed graph. CONN plays the role for
NL that Satisfiability plays for NP.

Definition 4.4 CONN is the following problem: Given (an encoding of) a
directed graph G and two nodes s and t, decide whether there is a path from
s to t in G.

Theorem 4.5 CONN is NL-complete.

Proof. We have to show two things: CONN ∈ NL and CONN is NL-hard.
For the first statement, we construct an O(log n) space bounded Turing

machine M for CONN. We may assume that the nodes of the graph are
numbered from 1, . . . , n. Writing down one node needs space log n. M first
writes s on the work tape and initializes a counter with zero. During the
whole simulation, the work tape of M will contain one node and the counter.
If v the the node currently stored, then M nondeterministically chooses an
edge (v, u) of G and replaces v by u and increases the counter by one. If u
happens to be t, then M stops and accepts. If the counter reaches the value
n, then M rejects.

It is easy to see that if there is a path from s to t, then there is an
accepting computation path of C, because if there is a path, then there is
one with at most n − 1 edges. If there is no path from s to t, then C will
never accept. (We actually do not need the counter, it is just used to cut
off infinite (rejecting) paths.) C only uses O(log n) space.

For the second statement, let L ∈ NL. Let M be some log n space
bounded nondeterministic Turing machine for L. We may assume w.l.o.g.
that for all inputs of length n, there is one unique accepting configuration.1

M accepts an input x, if we can reach this accepting configuration from
SC(x) in the configuration graph. We only have to consider clogn = poly(n)
many configurations.

It remains to show how to compute the reduction in logarithmic space,
that is, how to generate the configuration graph in logarithmic space. To
do this, we enumerate all configurations that use s(|x|) space where x is
the given input. For each such configuration C we construct all possible
successor configurations C ′ and write the edge (C,C ′) on the output tape.
To do so, we only have to store two configurations at a time. Finally, we have
to append the starting configurations SC(x) as s and the unique accepting
configuration as t to the output.

1We can assume that the worktape of M is onesided infinite. Whenever M would like
to stop, then it erases all the symbols it has written and then moves its head to the $ that
marks the beginning of the tape, moves the head of the input tape one the first symbol,
and finally halts.
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4.3 Proof of the Immerman–Szelepcsényi theorem

Our goal is to show that the complement of CONN is in NL. Since CONN is
NL-complete, CONN is co-NL-complete. Thus NL = co-NL. The Immerman-
Szelepcsényi theorem follows by translation.

Let G = (V,E) be a directed graph and s, t ∈ V . We want to check
whether there is no path from s to t. For each d, let

Nd = {x ∈ V | there is a path of length ≤ d from s to x.}

be the neighbourhood of s of radius d. Let

DIST = {〈G, s, x, d〉 | there is a path of length ≤ d from s to x}

DIST is the language of all tuples 〈G, s, x, d〉 such that x has distance at
most d from the source node s. Next we define a partial complement of
DIST. A tuple 〈G, s, x, d, |Nd|〉 is in NEGDIST if there is no path from s
to x of length ≤ d. If there is a path from s to x of length ≤ d, then
〈G, s, x, d, |Nd|〉 /∈ NEGDIST. For all 〈G, s, x, d, S〉 with S 6= |Nd|, we do not
care whether it is in NEGDIST or not.2

Lemma 4.6 DIST ∈ NL.

Proof. The proof is the same as showing that CONN ∈ NL. The only
difference is that we count to d and not to n.

Lemma 4.7 NEGDIST ∈ NL.

Proof. The following Turing machine accepts NEGDIST:

Input: 〈G, s, x, d, S〉

1. Guess S pairwise distinct nodes v 6= x, one after another.

2. For each v: Check whether v is at a distance of at most d from s by
guessing a path of length ≤ d from s to v.

3. Whenever one of these tests fails, reject.

4. If all of these tests are passed, then accept

If S = |Nd| and there is no path of length d from s to x, then M has
an accepting path, namely the path where M guesses all S nodes v in Nd

correctly and guesses the right paths that prove v ∈ Nd. If S = |Nd| and

2Strictly speaking, NEGDIST is not one language but a family of languages. When we say
that NEGDIST ∈ NL, we mean that for one choice of the do-not-care triples, the language
is in NL.
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there is a path of length ≤ d from s to x, then M can never accept, since
there are not |Nd| many nodes different from x with distance ≤ d from s.

M is surely log n space bounded, since it only has to store a constant
number of nodes and counters.

If we knew |Nd|, then we would be able to decide CONN with nondeter-
ministic logarithmic space.

Definition 4.8 A nondeterministic Turing machine M computes a func-
tion f : {0, 1}∗ → {0, 1}∗ if for every input x ∈ {0, 1}∗,

1. M halts with f(x) on the work tape on every accepting computation
path and

2. there is at least one accepting computation path on x.

Note that if L = L(M) for some nondeterministic Turing machine M ,
then it is not clear whether χL is computable (in the sense of definition
above) by a nondeterministic Turing machine with the same resources—in
contrast to deterministic Turing machines.

Lemma 4.9 There is a log n space bounded nondeterministic Turing ma-
chine that computes the mapping 〈G, s, d〉 → |Nd|.

Proof. We construct a Turing machine M that starts by computing |N0|
and then, given |Ni|, it computes |Ni+1|. Once it has computed |Ni+1|, it
can forget about |Ni|.

Input: 〈G, s, d〉
Output: |Nd|

1. Set |N0| = 1.

2. For i = 0 to d− 1 do

3. c := 0

4. For each node v ∈ V nondeterministically guess whether v ∈ Ni+1

5. If v ∈ Ni+1 was guessed, test whether 〈G, s, v, i+ 1〉 ∈ DIST.

6. If the test fails, reject, else set c = c+ 1.

7. If v /∈ Ni+1 was guessed, do the following:

8. For each u ∈ V , test whether 〈G, s, u, i, |Ni|〉 ∈ NEGDIST

9. If not, test whether u 6= v and (u, v) is not an edge of G.

10. If not, reject.
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11. |Ni+1| := c

12. return |Nd|

We prove by induction on j that |Nj | is computed correctly.

Induction base: |N0| is certainly computed correctly.

Induction step: Assume that |Nj | is computed correctly. This means that M
on every computation path on which the for loop of line 2 was executed for
the value j−1 computed the true value |Nj | in line 11. Consider the path on
which for each v, M correctly guesses whether v ∈ Nj+1. If v ∈ Nj+1, then
there is a computation path on which M passes the test 〈G, s, v, j+1〉 ∈ DIST

in line 5 and increases c in line 6. (Note that this test is again performed
nondeterministically.) If v /∈ Nj+1, then there is no u ∈ Nj such that there is
an edge (u, v) in G. Hence on some computation path, M will pass the tests
in line 8, since by the induction hypothesis, M computed |Nj | correctly.

On a path on which M made a wrong guess about v ∈ Nj+1, M cannot
pass the corresponding test and M will reject.

Thus on all paths, on which M does not reject, c has the same value in
the end, this value is |Nj+1|, and there is a least one such path. This proves
the claim about the correctness.

M is logarithmically space bounded, since it only has to store a constant
number of nodes and the values |Nj | and c. Testing membership in DIST

and NEGDIST can also be done in logarithmic space.

Theorem 4.10 CONN ∈ NL.

Proof. 〈G, s, t〉 ∈ CONN is equivalent to 〈G, s, t, n, |Nn|〉 ∈ NEGDIST, where
n is the number of nodes of G.

Exercise 4.4 Finish the proof of the Immerman–Szelepcsényi theorem. (Hint:
Translation)

4.4 Undirected s-t connectivity

Now that we have found a class that characterizes directed s-t connectivity,
it is natural to ask whether we can find a class that describes undirected
connectivity. UCONN is the following problem: Given an undirected graph
G and two nodes s and t, is there a path connecting s and t? To get a
complexity class that describes UCONN, we can define

SL = {L | L ≤log UCONN}.
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This makes UCONN automatically to an SL-complete problem. Now we have
to look for some other interpretation of SL. A Turing machine M is called
symmetric if for all configurations C and C ′,

C `M C ′ ⇒ C ′ `M C,

that is, the configuration graph is symmetric. It is fairly easy to see that

SL = {L | L = L(M) for some symmetric logarithmic space

bounded Turing machine M}

One can argue whether symmetric Turing machines are a natural concept
or not. However, right now, they are obsolete, since Omer Reingold proved
the remarkable result below, a proof of which we might see later.

Theorem 4.11 (Reingold) L = SL.

Corollary 4.12 UCONN ∈ L.

To appreciate the result above, note that in space O(log n), we can barely
store a constant number of nodes. Now take your favourite algorithm for
undirected connectivity and try to implement it with just logarithmic space.

Excursus: SL-complete problems

While SL looks like a little esoteric complexity class (well, at least as long as you
do not know that it equals L), a lot of natural problems where shown to be SL-
complete, but before Reingold’s result, nobody could prove that they were in L.
Here are some examples:

Planarity testing: Is a given graph planar?

Bipartiteness testing: Is a given graph bipartite?

k-disjoint paths testing: Has a given graph k node-disjoint paths from s to t?
(This generalizes UCONN.)

There is even a compendium of SL-complete problems (which are now L-complete
problems):

Carme Àlvarez and Raymond Greenlaw. A compendium of problems complete for
symmetric logarithmic space. Computational Complexity, 9:73–95, 2000.

Excursus: Vladimir Trifonov

Vladimir Trifonov is (was?) a poor PhD student at University of Texas who showed
that UCONN ∈ DSpace(log n log log n)3 at the same time when Omer Reingold showed
UCONN ∈ L. This way, a remarkable result became a footnote (or an excursus).

3Savitch’s Theorem gives UCONN ∈ DSpace(log2 n) and the best result at that time was
UCONN ∈ DSpace(log4/3 n) which was achieved by derandomizing a random walk on the
graph. We will come to this later . . .
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In this chapter we study another model of computation, Boolean circuits.
This model is useful in at least three ways:

• Boolean circuits are a natural model for parallel computation.

• Boolean circuits serve as a nonuniform model of computation. (We
will explain what this means later on.)

• Evaluating a Boolean circuit is a natural P-complete problem.

5.1 Boolean functions and circuits

We interpret the value 0 as Boolean false and 1 as Boolean true. A function
{0, 1}n → {0, 1}m is called a Boolean function. n is its arity, also called the
input size, and m is its output size.

A Boolean circuit C with n inputs and m outputs is an acyclic digraph
with ≥ n nodes of indegree zero and m nodes of outdegree zero. Each node
has either indegree zero, one or two. If its indegree is zero, then it is labeled
with x1, . . . , xn or 0 or 1. Such a node is called an input node. If a node has
indegree one, then it is labeled with ¬. Such a node computes the Boolean
Negation. If a node has indegree two, it is labeled with ∨ or ∧ and the node
computes the Boolean Or or Boolean And, respectively. The nodes with
outdegree zero are ordered. The depth of a node v of C is the length of a
longest path from a node of indegree zero to v. (The length of a path is the
number of edges in it.) The depth of v is denoted by depth(v). The depth
of C is defined as depth(C) = max{depth(v) | v is a node of C}. The size
of C is the number of nodes in it and is denoted by size(C).

Such a Boolean circuit C computes a Boolean function {0, 1}n → {0, 1}m
as follows. Let ξ ∈ {0, 1}n be a given input. With each node, we associate a
value val(v, ξ) ∈ {0, 1} computed at it. If v is an input node, then val(v, ξ) =
ξi, if v is labeled with xi. If v is labeled with 0 or 1, then val(v, ξ) is 0 or
1, respectively. This defines the values for all nodes of depth 0. Assume
that the value of all nodes of depth d are known. Then we compute val(v, ξ)
of a node v of depth d + 1 as follows: If v is labeled with ¬ and u is the
predecessor of v, then val(v, ξ) = ¬ val(u, ξ). If v is labeled with ∨ or ∧
and u1, u2 are the predecessors of v, then val(v, ξ) = val(u1, ξ) ∨ val(u2, ξ)
or val(v, ξ) = val(u1, ξ)∧ val(u2, ξ). For each node v, this defines a function
{0, 1}n → {0, 1} computed at v by ξ 7→ val(v, ξ). Let g1, . . . , gm be the

27
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functions computed at the output nodes (in this order). Then C computes
a function {0, 1}n → {0, 1}m defined by ξ 7→ g1(ξ)g2(ξ) . . . gm(ξ). We denote
this function by C(ξ).

The labels are taken from {¬,∨,∧}. This set is also called standard basis.
This standard is known to be complete, that is, for any Boolean function
f : {0, 1}n → {0, 1}m, there is Boolean circuit (over the standard basis) that
computes it. For instance, the CNF of a function directly defines a circuit
for it. (Note that we can simulate one Boolean And or Or of arity n by n−1
Boolean And or Or of arity 2.)

Finally, a circuit is called a Boolean formula if all nodes have outdegree
≤ 1.

Exercise 5.1 Show that for any Boolean circuit of depth d, there is an
equivalent Boolean formula of depth O(d) and size 2O(d).

Exercise 5.2 Prove that for any Boolean circuit C of size s, there is an
equivalent one C ′ of size ≤ 2s + n such that all negations have depth 1 in
C ′. (Hint: De Morgan’s law. It is easier to prove the statement first for
formulas.)

Boolean circuits can be viewed as a model of parallel computation, since
a node can compute its value as soon as it knows the value of its predecessor.
Thus, the depth of a circuits can be seen as the time taken by the circuit
to compute the result. Its size measures the “hardware” needed to built the
circuit.

Exercise 5.3 Every Boolean function f : {0, 1}n → {0, 1} can be computed
by a Boolean circuit of size 2O(n).1

5.2 Uniform families of circuits

There is a fundamental difference between circuits and Turing machines.
Turing machines compute functions with variable input length, e.g., Σ∗ →
Σ∗. Boolean circuits only compute a function of fixed size {0, 1}n → {0, 1}m.
Since the input alphabet Σ is fixed, we can encode the symbols of Σ by a
fixed length binary code. In this way, we overcome the problem that Turing
machines and Boolean circuits compute on different symbols. To overcome
the problem that circuits compute functions of fixed length, we will introduce
families of circuits.

In the following, we will only look at Boolean circuits with one output
node, i.e., circuits that decide languages. Most of the concepts and results

1This can be sharpened to (1 + ε) · 2n/n for any ε > 0. The latter bound is tight: For
any ε > 0 and any large enough n, there is a Boolean function f : {0, 1}n → {0, 1} such
that every circuit computing f has size (1− ε)2n/n. This is called the Shannon–Lupanow
bound.
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presented in the remainder of this chapter also work for circuits with more
output nodes, that is, circuits that compute functions.

Definition 5.1 1. A sequence C = C1, C2, C3, . . . of Boolean circuits
such that Ci has i inputs is called a family of Boolean circuits.

2. C is s size bounded and d depth bounded if size(Ci) ≤ s(i) and depth(Ci) ≤
d(i) for all i.

3. C computes the function {0, 1}∗ → {0, 1} given by x 7→ C|x|(x). Since
we can interpret this as a characteristic function, we also say that C
decides a language.

Families of Boolean circuits can decide nonrecursive languages, in fact
any L ⊆ {0, 1}∗ is decided by a family of Boolean circuits. To exclude such
phenomena, we put some restriction on the families.

Definition 5.2 1. A family of circuits is called s space and t time con-
structible, if there is an s space bounded and t time bounded determin-
istic Turing machine that given input 1n writes down an encoding of
Cn that is topologically sorted.

2. A s size and d depth bounded family of circuits C is called logarith-
mic space uniform if it is O(log s(n)) space constructible. It is called
polynomial time uniform, if it is poly(s) time constructible.

3. We define

log-unif-DepthSize(d, s) = {L | there is a d depth and s size bounded

logarithmic space uniform family of

circuits that decides L.}
P-unif-DepthSize(d, s) = {L | there is a d depth and s size bounded

polynomial time uniform family of

circuits that decides L.}

Note that logarithmic space uniformity implies polynomial time unifor-
mity. Typically, logarithmic space uniformity seems to be the more appro-
priate concept.

5.3 Simulating families of circuits by Turing machines

Theorem 5.3 If L ⊆ {0, 1}∗ is decided by a d depth bounded and s space
constructible family of circuits C, then

L ∈ DSpace(d+ s).



30 5. Boolean circuits

Proof. Let ξ be the given input, |ξ| = n. To evaluate the Boolean
circuit Cn at a ξ ∈ {0, 1}n, we have to compute val(v, ξ) where v is the
output node of C. To compute val(u, ξ) for some u we just have to find the
predecessors u1 and u2 of u (or just one predecessor in the case of a ¬ gate or
no predecessor in the case of an input gate). Then we compute recursively
val(u1, ξ) and val(u2, ξ). From these to values, we easily obtain val(v, ξ).

To do this, we would need a stack of size d(n), the depth of Cn. Each
entry of the stack basically consists of two nodes. How much space do we
need to write down the nodes? Since each node in a circuit has at most 2
predecessors, the number of nodes of Cn is bounded by 2d(n). Thus we need
d(n) bits to write down a name of a node. Thus our stack needs O(d2(n))
many bits altogether. While this is not bad at all, it is more than promised
in the theorem.

A second problem is the following: How do we get the predecessors of
u? Just constructing the whole circuit would take too much space.

The second problem is easily overcome and we saw the solution to it
before: Whenever we want to find out the predecessors of a node u, we
simulate the Turing machine M constructing Cn, let it write down the edges
one by one, always using the space again. Whenever we see an edge of the
form (u′, u), we have found a predecessor u′ of u.

For the first problem, we again use the trick of recomputing instead of
storing data. In the stack, we do not explicitly store the predecessors of a
node. Instead we just write down which of the at most two predecessors we
are currently evaluating (that means, the first or the second in the represen-
tation written by M). In this way, we only have to store a constant amount
of information in each stack entry. The total size of the stack is O(d(n)).
To find the name of a particular node, we have to compute the names of all
the nodes that were pushed on the stack before using M . But we can reuse
the space each time.

Altogether, we need the space that is used for simulating M , which is
O(s), and the space needed to store the stack, which is O(d). This proves
the theorem.

Remark 5.4 If we assume that the family of circuits in the theorem is
s size bounded and t time constructible, then the proof above shows that
L ∈ DTime(t+ poly(s)). The proof gets even simpler since we can construct
the circuit explicitly and store encodings of the nodes in the stack. The best
simulation known regarding time is given in the next exercise.

Exercise 5.4 If L ⊆ {0, 1}∗ is decided by a s size bounded and t time
constructible family of circuits C, then

L ∈ DTime(t+ s log2 s).
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5.4 Simulating Turing machines by families of circuits

In the “Theoretical Computer Science” lecture, we gave a size efficient sim-
ulation of Turing machines by circuits (Lemma 27.5), which we restate here
for arbitrary time functions (but the proof stays the same!).

Theorem 5.5 Let t be a time constructible function, and let L ⊆ {0, 1}∗ be
in DTime(t). Then there is a O(t2) time constructible family of circuits that
is O(t2) size bounded and decides L.

Remark 5.6 If t is computable in O(log t) space (this is true for all rea-
sonable functions), then the family is also O(log t) space constructible.

Theorem 5.5 is a size efficient construction. The following result gives a
depth efficient construction.

Theorem 5.7 Let s ≥ log be space constructible and let L ⊆ {0, 1}∗ be in
NSpace(s). Then there is a s space constructible family of circuits that is
O(s2) depth bounded and decides L.

Before we give the proof, we need some definitions and facts. For two
Boolean matricesA,B ∈ {0, 1}n×n, A∨B denotes the matrix that is obtained
by taking the Or of the entries of A and B componentwisely. A�B denotes
the Boolean matrix product of A and B. The entry in position (i, j) of
A�B is given by

∨n
k=1 ai,k ∧ bk,j . It is defined as the usual matrix product,

we just replace addition by Boolean Or and multiplication by Boolean And.
The mth Boolean power of a Boolean matrix A is defined as

A�m = A� · · · �A︸ ︷︷ ︸
m times

,

with the convention that A�0 = I, the identity matrix.

Exercise 5.5 Show the following:

1. There is an O(log n) depth and O(n3) size bounded logarithmic space
uniform family of circuits C such that Cn computes the Boolean prod-
uct of two given Boolean n× n matrices.

2. There is an O(log2 n) depth and O(n3 log n) size bounded uniform fam-
ily of circuits D such that Dn computes the nth Boolean power of a
given Boolean n× n matrix.

Note that we here deviate a little from our usual notation. We only allow
inputs of sizes 2n2 and n2, respectively, for n ∈ N. We measure the depths
and size as a function in n (though it does not make any difference here).
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For a graph G with n nodes, the incidence matrix of G is the Boolean
matrix E = (ei,j) ∈ {0, 1}n×n defined by

ei,j =

{
1 if there is an edge (i, j) in G,

0 otherwise.

Exercise 5.6 Let G and E be as above.

1. Show that there is a path from i to j in G of length ` iff the entry of
E�` in position (i, j) equals 1.

2. Show that there is a path from i to j in G iff the entry in position (i, j)
of (I ∨ E)�n equals 1.

Proof of Theorem 5.7. Let M be an s space bounded nondeterminis-
tic Turing machine with L(M) = L. We may assume that M has a unique
accepting configuration D. On inputs of length n, M has cs(n) many configu-
rations. The idea is to construct the incidence matrix E of the configuration
graph and then compute the cs(n)th Boolean power of I ∨E. M accepts an
input x iff the entry in the position corresponding to the pair (SC(x), D) in
the cs(n)th Boolean power of I ∨ E is 1.

Once we have constructed the matrix, we can use the circuit of Exer-
cise 5.5. The size of the matrices is cs(n) × cs(n). A circuit for computing
the cs(n)the power of it is O(log cs(n)) = O(s(n)) space constructible and
O(log2(cs(n))) = O(s2(n)) depth bounded.

Thus the only problem that remains is to construct a circuit that given
x outputs a cs(n) × cs(n) Boolean matrix that is the incidence matrix of
the configuration graph of M with input x. This can be done as follows:
We enumerate all pairs C,C ′ of possible configurations. In C, the head on
the input tape is standing on some particular symbol, say, xi. If C `M C ′

independent of the value of xi, then the output gate corresponding to (C,C ′)
is 1. If C `M C ′ only if xi = 0, then the output gate corresponding to
(C,C ′) computes ¬xi. If C `M C ′ only if xi = 1, then the output gate
corresponding to (C,C ′) computes xi. Otherwise, it computes 0. Thus the
circuit computing the matrix is very simple. It can be constructed in space
O(s) since we only have to store two configurations at a time.

Remark 5.8 Theorem 5.3 and 5.7 yield an alternative proof of Savitch’s
theorem.

5.5 Nick’s Class

Circuits are a model of parallel computation. To be really faster than se-
quential computation, we want to have a exponential speedup for parallel
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computations. That means if one wants to study circuits as a model of par-
allelism, the depth of the circuits should be polylogarithmic. On the other
hand, we do not want too much “hardware”. Thus the size of the circuits
should be polynomial.

Definition 5.9

NCk =
⋃
i∈N

log-unif-DepthSize(logk(n),O(ni)) k = 1, 2, 3, . . .

NC =
⋃
k∈N

NCk

NC stands for “Nick’s Class”. Nicholas Pippenger was the first one to
study such classes. Steve Cook then chose this name.

Obviously,
NC1 ⊆ NC2 ⊆ · · · ⊆ NC.

By Theorem 5.3 and 5.7 and Remark 5.4

NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ · · · ⊆ NC ⊆ P.

Problems in NL have efficient parallel algorithms

The inclusion NC1 ⊆ L suggests that logarithmic space uniformity is too
strong for NC1. There are solutions to this problem but we will not deal
with it here.

Excursus: The division breakthrough

Often you find NCk defined with respect to polynomial time uniformity instead
of logarithmic space uniformity. One reason might be that for a long time, we
knew that integer division was in polynomial time uniform NC1 but it was not
known whether it was in logarithmic space uniform NC1. This was finally shown
by Andrew Chiu in his Master’s thesis. After that, Chiu attended law school.

Paul Beame, Steve Cook, James Hoover. Log depth circuits for division and related
problems. SIAM J. Comput., 15:994–1003, 1986.
Andrew Chiu, George I. Davida, Bruce E. Litow. Division in logspace-uniform
NC1. Informatique Théoretique et Applications 35:259-275, 2001.



6 NL, NC, and P

Lemma 6.1 Let L ⊆ {0, 1}∗ be P-complete under logarithmic space many-
one reductions. If L ∈ NC, then NC = P.

Proof. Let L′ ∈ P be arbitrary. Since L is P-hard, L′ ≤log L. Since
L ∈ NC, this means that there is a uniform family of circuits C that is
logk(n) depth and poly(n) size bounded for some constant k and decides L.
We want to use this family to get a uniform family of circuits for L′ by using
the fact that L′ ≤log L.

Since L ⊆ NC, this is clear in principle, but there are some technical
issues we have to deal with. First, we have to compute a function f and
not decide a language. Second, a logspace computable function can map
strings of the same length to images of different length. We deal with these
problems as follows:

• Since f is in particular polynomial time computable, we know that
|f(x)| ≤ p(|x|) for all x for some polynomial p. Instead of mapping
x to f(x), we map x to 0|f(x)|1p(|x|)−|f(x)|f(x)0p(|x|)−|f(x)|, that is, we
pad f(x) with 0’s to length p(|x|). In front we place another p(x)
bits indicating how long the actual string f(x) is and how many 0’s
were added. This new function, call it f ′, is surely logarithmic space
computable.

• We modify the family of circuits C such that it can deal with the
strings of the form f ′(x). We only need a circuit for strings of lengths
2p(n). Such a circuit consists of copies of all circuits C1, C2, . . . , Cp(n).
(This is still polynomial size!) Ci gets the first i bits of the second half
of f ′(x). The first have of the bits of f ′(x) is used to decide which of
the p(|x|) circuits computes the desired result. Call this new family
C ′.

• Since f ′ is logarithmic space computable, the language

B = {〈x, i〉 | the ith bit of f ′(x) is 1}

is in L. Since L ⊆ NC, there is a logarithmic space uniform family of
circuits that decides B. Using these family, we can get circuits that
we can use to feed the corresponding bits of f ′(x) into C ′.

It is easy but a little lengthy to verify that the new family is still logarithmic
space constructible.

34
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Thus a P complete problem is neither likely to have an algorithm that
uses few space (even a nondeterministic one) nor to have an efficient parallel
algorithm.

6.1 Circuit evaluation

Definition 6.2 The circuit value problem CVAL is the following problem:
Given (an encoding of) a circuit C with n inputs and one output and an
input x ∈ {0, 1}n, decide whether C(x) = 1.

Since C can only output two different values, the problem CVAL is basi-
cally equivalent to evaluating the circuit.

Theorem 6.3 CVAL is P-complete.

Proof. The proof of Theorem 5.3 together with Remark 5.4 basically
shows that the problem is in P.

It remains to show the hardness. By Theorem 5.5, every language in
L ∈ P is decided by a uniform family of circuits C whose size is poly-
nomially bounded. Since the family is uniform, the function 1n 7→ Cn is
logarithmic space computable. But then also x 7→ 〈C|x|, x〉 is logarithmic
space computable since we only have to append the x to the description of
the circuit. But this mapping is a logarithmic space reduction from L to
CVAL.

Excursus: P-complete problems

If a problem is P-complete under logarithmic space many-one reductions, then this
means that it does not have an efficient parallel algorithm by Lemma 6.1, unless
you believe that NC = P. Here are some more P-complete problems:

Breadth-depth search: Given a graph G with ordered nodes and two nodes u
and v, is u visited before v in a breadth-depth search induced by the vertex
ordering?

Maximum flow: Given a directed graph G, a capacity function c on the edges, a
source s and a target t and a bound f , is there a feasible flow from s to t of
value ≥ f .

Word problem for context-free grammars: Given a word w and a context-
free grammar G, is w ∈ L(G)?

The following book contains and abundance of further problems:

Raymond Greenlaw, James Hoover, Walter L. Ruzzo. Limits to Parallel Computa-
tion: P-Completeness Theory, Oxford University Press, 1995.

There are also some interesting problems of which we do not know whether
they are P-hard, for instance:
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Integer GCD: Given two n-bit integers, compute their greatest common divisor.
(This is a search problem, not a decision problem.)

Perfect Matching: Given a graph G, does it have a perfect matching? (We will
see this problem again, when we deal with randomization.)

6.2 Steve’s Class

So far, we compared P with L and NL. But also L ∈ DSpace(logk(n)) for
some constant k means that L has an algorithm with very few space. The
only problem with this class is that we do not know whether it is contained
in P. (For instance, with log2 n space, you can count up to nlogn. Though
that is still a moderately growing function, it is not polynomial.) The right
classes to study are the simultaneous time and space bounded classes

SCk =
⋃
i∈N

DTimeSpace(O(ni), logk n)

SC =
⋃
i∈N

SCi

These classes are known as Steve’s classes. Nicholas Pippenger named them
after Steve Cook because Steve was a nice guy who named the NCk classes
after Nicholas Pippenger before. Manus manum lavat.



7 The polynomial method

In this chapter, we prove a lower bound for the circuit size of constant depth
unbounded fanin circuits for PARITY. The lower bounds even hold in the
nonuniform setting.

7.1 Arithmetization

As a first step, we represent Boolean functions {0, 1}n → {0, 1} as polyno-
mials p ∈ R[X1, . . . , Xn]. A Boolean function is represented by a polynomial
p if

p(x) = f(x) for all x ∈ {0, 1}n

Above, we embed the Boolean values {0, 1} into R by mapping 0 (false) to
0 and 1 (true) to 1.

Since x2 = x for all x ∈ {0, 1}, whenever a monomial in the polynomial
p contains a factor Xj

i , we can replace it by Xi and the polynomial still
represents the same Boolean function. Therefore, we can always assume
that the representing polynomial is multilinear. In this case, the representing
polynomial is unique.

Exercise 7.1 Show the following: Let f : {0, 1}n → {0, 1}. If p is a multi-
linear polynomial with p(x) = f(x) for all x ∈ {0, 1}n, then p is unique.

Example 7.1 1. The Boolean AND of n inputs is represented by the
degree n polynomial X1X2 · · ·Xn.

2. The Boolean NOT is represented by 1−X.

3. The Boolean OR is represented by 1 − (1 − X1)(1 − X2) · · · (1 − Xn)
(de Morgan’s law).

7.2 Approximation

One potential way to prove lower bounds is the following:

1. Introduce some complexity measure or potential function.

2. Show that functions computed by devices of type X have low complex-
ity.

3. Show that function Y has high complexity.

37
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A complexity measure that comes to mind is the degree of the represent-
ing polynomial. However, since Boolean AND and Boolean OR have repre-
senting polynomials of degree n, there is no hope that constant depth un-
bounded fanin circuits have low degree. However, we can show that Boolean
AND and Boolean OR can be approximated by low degree polynomials in
the following sense: A Boolean function is randomly approximated with error
probability ε by a family of polynomials P if

Pr
p∈P

[p(x) = f(x)] ≥ 1− ε for all x ∈ {0, 1}∗.

Proof overview: This suggest the following route:

1. Unbounded fanin Boolean AND and Boolean OR can be approximated
by low degree polynomials, i.e., degree O(log n).

2. Boolean functions that are approximated by unbounded fanin circuits
of size s and depth d have degree O(logd+1 s).

3. PARITY cannot be approximated by small degree polynomials.

We start with a technical lemma.

Lemma 7.2 Let S0 be a set of size n. Let ` = log n + 2. Starting with
S0, iteratively construct a tower S0 ⊇ S1 ⊇ S2 ⊇ · · · ⊇ S` by putting each
element of Si−1 into Si with probability 1/2. Then for all non-empty T ⊆ S0,

Pr[there is an i such that |Si ∩ T | = 1] ≥ 1/2

Proof. We consider three cases:

Bad case: |T ∩ S`| > 1. We have

Pr[|T ∩ S`| > 1] ≤ Pr[|T ∩ S`| ≥ 1]

≤ n · 2−`

≤ 1/4,

since |T ∩ S`| ≥ 1 means that at least one element survived all ` coin flips.

Very good case: |T | = |T ∩ S0| = 1.

Good case: |T ∩ S0| > 1 and there is an i such that |T ∩ Si| ≤ 1. We
can assume that |T ∩ Si−1| = s > 1. Then the probability that T ∩ Si
has exactly one element is the probability that all but one elements do not
survive the coin flip, which is s · 2−s divided by the probability that after
the coin flips |T ∩ Si| ≤ 1. The latter probability is (s+ 1) · 2−s. Thus the
overall probability is s/(s+ 1) ≥ 2/3.
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With probability 3/4, we are in the very good or good case. If we are
in the very good or good case, then with probability ≥ 2/3, there is an
i such that |T ∩ Si| = 1. Thus we have success with probability at least
3/4 · 2/3 = 1/2.

Lemma 7.3 Let 1 > ε > 0. There is a family of polynomials P of degree
O(log(1/ε) · log n) such that

Pr
p∈P

[
n∨
i=1

xi = p(x)] ≥ 1− ε for all x ∈ {0, 1}n.

Proof. We construct random sets S0, . . . , S` like in Lemma 7.2. Let

p1(x) =

1−
∑
j∈S0

xj

 · · ·
1−

∑
j∈S`

xj


If all xj ’s are zero, then all the sums in p1 are zero and p1(x) = 1. Next
comes the case where at least one xj = 1. Let T = {j | xj 6= 0}. By
Lemma 7.2, there is an i such that |Si ∩ T | = 1 with probability ≥ 1/2, i.e,
the ith factor of p1 is zero with probability ≥ 1/2. Now instead of one p1, we
take k independent instances p1, . . . , pk and set p̂ = p1 . . . pk. If all xj ’s are
zero then p̂(x) = 1. If at least one xj = 1, then at least one pk(x) = 0 with
probability ≥ 1− (1/2)k ≥ 1− ε for k ≥ log(1/ε) and henceforth, p̂(x) = 0.
Thus 1− p̂(x) =

∨n
i=1 xi happens with probability ≥ 1−ε for all x ∈ {0, 1}n.

Exercise 7.2 Show that
∧n
i=1 xi can be approximated in the same way.

Lemma 7.4 Let f : {0, 1}n → {0, 1} be computed by an s size bounded
and d depth bounded circuit of unbounded fanin. Then f can be randomly
approximated with error probability ε by a family of polynomials of degree
O(logd(s/ε) · logd(s)).

Proof. We replace every OR or AND gate by a random polynomial from
a family with error probability ε/s. Each polynomial has degree O(log(s/ε) ·
log(s)), since every gate can have at most s inputs. The degree of the
polynomial at the output gate is O(logd(s/ε) · logd(s)), since the composition
of polynomials multiplies the degree bounds.

If all polynomials compute their respective gate correctly, then the poly-
nomial computes the function f correctly. The probability that a single
polynomial fails is at most ε/s. By a union bound, the overall error proba-
bility is thus at most sε/s = ε.
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Corollary 7.5 Let f : {0, 1}n → {0, 1} be computed by an s size bounded
and d depth bounded unbounded fanin circuit. Then there is a polynomial p
of degree O(logd(s/ε) · logd(s)) such that

Pr
x∈{0,1}n

[f(x) = p(x)] ≥ 1− ε.

Proof. For every x, Prp∈P [f(x) = p(x)] ≥ 1 − ε, where P is the corre-
sponding approximating family. Thus, Prx,p[f(x) = p(x)] ≥ 1 − ε. Thus,
there must be at least one p that achieves this probability.

Exercise 7.3 The statement of Corollary 7.5 is sufficient for our proof.
Why does the following argument not work: The zero polynomial and the one
polynomial approximate the AND and OR polynomial with error probability
1− 2−n. Now take a circuit as in Lemma 7.4 and do the same construction
with these polynomials.

7.3 Parity

So far, we identified the truth value 0 with the natural number 0 and the
truth value 1 with the natural number 1. Why this looks natural, in the
following it is advantageous to work with the representation −1 for the truth
value 1 and 1 for the truth value 0. This representation is also called the
Fourier representation.

The linear function 1− 2x maps 0 to 1 and 1 to −1. Its inverse function
is 1

2(1− x). Thus we can switch between these two representations without
changing the degrees of the polynomials in the previous sections.

Using the Fourier representation, the parity function can be written as∏n
i=1 xi.

Lemma 7.6 There is no polynomial p of degree ≤
√
n/2 such that

Pr
x∈{−1,1}n

[p(x) = x1 · · ·xn] ≥ 0.9.

Proof. Let p be a polynomial of degree ≤
√
n/2. As seen above, we can

assume that p is multilinear. Let A = {x ∈ {−1, 1}n | p(x) = x1 · · ·xn}.
Let V be the R-vector space of all functions A → R. Its dimension is

|A|.
The set M of all multilinear polynomials of degree ≤ (n+

√
n)/2 forms a

vector space, too. A basis of this vector space are all multilinear monomials
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of degree ≤ (n+
√
n)/2. Thus

dimM =

(n+
√
n)/2∑

i=0

(
n

i

)

=

n/2∑
i=0

(
n

i

)
+

n/2+
√
n/2∑

i=n/2+1

(
n

i

)

≤ 1

2
· 2n +

√
n

2

(
n

n/2

)
≤ 1

2
· 2n +

√
n

2

2n√
πn/2

(Stirling’s formula)

< 0.9 · 2n.

Finally we show that every function in V can be represented by an
element of M on A. Then

|A| = dimV ≤ dimM < 0.9 · 2n.

and we are done.
There is a natural isomorphism between the vector space of all functions

{−1, 1}n → {−1, 1} and the vector space of all multilinear polynomials, cf.
Exercise 7.1. Let

∏
i∈I xi be some multilinear monomial of degree > n/2.

Then ∏
i∈I

ai =
∏
i∈I

ai

(∏
i/∈I

ai

)2

= p(a)
∏
i/∈I

ai

for all a ∈ A. Thus for all functions A → R, the monomials of degree
(n+

√
n)/2 are sufficient to represent them. This concludes the proof.

Corollary 7.7 1. Any constant depth d circuit that computes parity on
n inputs has size at least 2Ω( 2d√n).

2. Any polynomial size circuit that computes parity on n inputs has depth
at least Ω(log n/ log log n).

Excursus: AC

ACi is the class of all languages that are recognized by logarithmic space uniform
unbounded fanin circuits with depth O(logi n) and polynomial size. Let AC =⋃

i∈N ACi.
If a circuit has polynomial size, then every gate can have at most a polynomial

number of inputs. Thus we can simulate every unbounded fanin gate by a binary
tree of logarithmic depth. Hence we get

AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ . . .
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and AC = NC. Corollary 7.7 in particular shows that AC0 6= NC1. We do not know
whether any of the other inclusions is strict.

Exercise 7.4 Show that PARITY ∈ NC1.



8 P and NP

8.1 NP and quantifiers

Beside the usual definition of NP, there is an equivalent one based one
verifiers. We showed this characterization in the “Theoretical Computer
Science” lecture.

Definition 8.1 A deterministic polynomial time Turing machine M is called
a polynomial time verifier for L ⊆ Σ∗, if there is a polynomial p such that
the following holds:

1. For all x ∈ L there is a c ∈ {0, 1}∗ with |c| ≤ p(|x|) such that M
accepts 〈x, c〉.

2. For all x /∈ L and all c ∈ {0, 1}∗, M on input 〈x, c〉 reads at most
p(|x|) bits of c and always rejects 〈x, c〉.

We denote the language L that M verifies by V (M).

The string c serves as a certificate (or witness or proof ) that x is in L. A
language L is verifiable in polynomial time if each x in L has a polynomially
long proof. For each x not in L no such proof exists.

Note that the language V (M) that a verifier verifies is not the language
that it accepts as a “normal” Turing machine. L(M) can be viewed as
a binary relation, the pairs of all (x, c) such that M accepts 〈x, c〉, i.e.,
M(〈x, c〉) = 1.

The following theorem is proven in the “Theoretical Computer Science”
lecture (as Theorem 26.5):

Theorem 8.2 L ∈ NP iff there is a polynomial time verifier for L.

Let M be a polynomial time verifier for L. As described above, we can
view L(M) as a binary relation. We denote this relation by R. Instead
for writing (x, c) ∈ R we will also write R(x, c) = 1. Thus R(x, c) = 1
iff M(〈x, c〉) = 1. Thus, a language L is in NP if and only if there is a
polynomial p and a polynomial time computable relation R such that the
following holds:

x ∈ L ⇐⇒ ∃y ∈ {0, 1}p(|x|) : R(x, y) = 1. (8.1)

The string y models the nondeterministic choices of the Turing machine.
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Recall that co-NP is the class of all L such that L̄ ∈ NP. Thus L is
in co-NP if there is a polynomial time bounded nondeterministic Turing
machine M such that for all x ∈ L, each path in the computation tree of
M is accepting and for all x /∈ L, there is at least one rejecting path in the
computation tree. This gives us a characterization in terms of certificates
for co-NP: co-NP is characterized via

x ∈ L ⇐⇒ ∀y ∈ {0, 1}p(|x|) : R(x, y) = 1.

In other words, languages in co-NP have polynomially long proofs for non-
membership.

In the following, ∃P y and ∀P y means ∃y ∈ {0, 1}p(|x|) and ∀y ∈ {0, 1}p(|x|),
respectively, for some polynomial p.

8.2 NP-complete problems

The class NP is very important, since it characterizes the complexity of an
abundance of relevant problems. The most prominent of them is probably
the satisfiability problem. It comes in several variations:

Definition 8.3 1. CSAT is the following problem: Given (an encoding
of) a Boolean circuit C, decide whether there is a Boolean vector ξ
with C(ξ) = 1.

2. SAT is the following problem: Given (an encoding of) a Boolean for-
mula in CNF, decide whether there is a satisfying assignment.

3. `SAT is the following problem: Given (an encoding of) a Boolean for-
mula in `-CNF, decide whether there is a satisfying assignment.

We usually use polynomial time many one reductions to compare prob-
lems in NP. However, we do not know of any problem that is NP-complete
under polynomial time many one reductions but not complete under loga-
rithmic space polynomial time reductions. Obviously,

`SAT ≤P SAT ≤P CSAT.

`SAT is obviously a special case of SAT and so is SAT a special case of CSAT.
For the latter note that any formula can be interpreted as a circuit. We
showed that 3SAT is NP-complete, in turn, SAT and CSAT are NP-complete,
too.

Definition 8.4 TAUT is the following problem: Given a formula in DNF,
decide whether it is a tautology, i.e., whether all assignments satisfy it.
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TAUT is co-NP-complete. Let UNSAT be the encodings of all formulas in
CNF that are not satisfiable. Note that UNSAT is not the complement of SAT.
The complement of SAT is UNSAT together with all strings that are not an
encoding of a formula in CNF. But since such strings can be recognized in
polynomial time, we get that SAT ≤P UNSAT. But a formula F is unsatisfiable
iff ¬F is a tautology. If F is in CNF, then we can compute the DNF of ¬F
in polynomial time using De Morgan’s law. Thus UNSAT ≤P TAUT. Since
SAT is NP-complete, SAT is co-NP-complete and so is TAUT.

8.3 Self reducibility

Proving existence versus searching

Is showing the existence of a proof easier than finding the proof
itself?

Maybe in real life but not for NP-complete problems . . .

Assume we have a polynomial time deterministic algorithm for SAT.
Then given a formula F , we can find out whether it is satisfiable or not
in polynomial time. But what we really want is a satisfying assignment.

Let us first have a look at SAT. SAT has a nice property, we can reduce
questions about a formula F in CNF to questions about smaller formulas.
Let x be a variable of F . Let F0 and F1 be the two formulas that are
obtained by setting x to 0 or 1, respectively, and then removing clauses that
are satisfied by this and removing literals that became 0. (This proceed can
produce an empty clause. Such a formula is not satisfiable by definition.
Or the procedure could produce the empty formula in CNF. This one is
satisfiable.) Then F is satisfiable if and only if F0 or F1 is satisfiable. Note
that the length of F0 and F1 is smaller than the length of F .

Definition 8.5 A language A is called downward self-reducible, if there is
a polynomial time oracle deterministic Turing machine M that on input x,
only queries oracle strings with length < |x| such that A = L(MA).

Without the restriction that M can only query strings of smaller size,
this would not be a useful concept since M could query the oracle about the
input itself.

The considerations above show the following result.

Theorem 8.6 SAT is downward self-reducible. The same is true for CSAT.

Exercise 8.1 Show that if A is downward self-reducible, then A ∈ PSPACE.
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Exercise 8.2 Let M be a deterministic Turing machine that only queries
oracle strings that are shorter than the input string. Show that if A = L(MA)
and B = L(MB) then A = B. (Hint: show that for all n, A≤n = B≤n using
induction.)

For each problem A ∈ NP, there is a relation R that is polynomial time
computable such that (8.1) holds. But vice versa, each such relation R
defines a language in NP via

L(R) = {x | ∃P y : R(x, y) = 1}.

We call such an R an NP-relation or polynomially bounded relation. Given
such a NP relation R, search(R) is the set of all functions

x 7→

{
y with R(x, y) = 1 if such a y exists

undef otherwise.

Example 8.7 Let R be the relation corresponding to SAT, i.e., R(x, y) = 1
if x encodes a formula F and y is a satisfying assignment of F .

1. L(R) = SAT.

2. search(R) is the set of all functions that map a formula F to a satis-
fying assignment if one exists.

We call search(R) self-reducible if there is an f ∈ search(R) such that
f = ML(R) for some polynomial time deterministic oracle Turing machine
M . That means, we can reduce the problem of finding a certificate to the
decision problem.

Recall that ML(R) denotes that function that is computed by M with
oracle L(R). For our example this means that we could find a satisfying
assignment in polynomial time given that SAT ∈ P.

Theorem 8.8 Let R be an NP-relation. If L(R) is NP-complete, then
search(R) is self-reducible.

Proof. A deterministic Turing machine M for computing f ∈ search(R)
works as follows:

Input: x and oracle access to L(R)
Output: “undef” or a certificate y such that R(x, y) = 1.

1. Ask whether x ∈ L(R). If no, then output “undef”.

2. Let N be some polynomial time verifier that computes R. From N ,
we get a circuit C such that each satisfying assignment y is a proof
that x ∈ L(R). This construction basically is the same one as the con-
struction that shows that CSAT is NP-complete and can be performed
in polynomial time.
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3. Since L(R) is NP-complete, there is a polynomial time many one re-
duction f from CSAT to L(R).

4. Since CSAT is downward selfreducible, we can find a y such that C(y) =
1 in polynomial time provided we have an oracle to CSAT. Instead of
asking whether x ∈ CSAT, we ask whether f(x) ∈ L(R). Since f is a
many one reduction, these questions are equivalent.

5. Such a y fulfills R(x, y) = 1 by construction. Return y.

The above procedure can be performed by a polynomial time determin-
istic Turing machine with oracle access to L(R). It computes a function in
search(R) by construction. Thus search(R) is self-reducible.

In other words, the theorem above says that for NP-complete problems,
computing a witness for membership is only polynomially harder than de-
ciding membership.

Search problems in the context of NP were introduced by Leonid Levin.

8.4 NP and co-NP

One approach to show that P 6= NP would be to show that NP is not closed
under complementation, i.e., NP 6= co-NP. To show that NP is closed under
complementation, it is sufficient to show that an NP-complete problem is in
co-NP.

Theorem 8.9 If co-NP contains an NP-complete problem, then NP = co-NP.

Proof. Let L ∈ co-NP be NP-complete.
Let A ∈ NP arbitrary. Since L is NP-complete, there is a polynomial

time many one reductions f from A to L. But since L ∈ co-NP, A is also
in co-NP, since we can write A = {x | ∀P y : R(f(x), y) = 1} for some
polynomial time computable relation R with L = L(R). Thus NP ⊆ co-NP.

Let B ∈ co-NP. If L is NP-complete, then L̄ is co-NP-complete by
Exercise 3.2. A similar argument as above now shows that B ∈ NP.

A natural co-NP-complete problem is UNSAT, another one is TAUT. But
we do not know whether they are in NP or not. Most researchers conjecture
that they are not.

What is the relation between P and NP ∩ co-NP? PRIMES, the problem
whether a given number (in binary) is a prime number, was the example of
an interesting language in NP∩co-NP that is not known to be in P. Recently,
Agrawal, Kayal, and Saxena showed that PRIMES ∈ P. (Maybe this is again
a good point in time to do some advertisement for the complexity theory
seminar next semester.)

Here is another problem that is in NP ∩ co-NP that is not known to be
in P.



48 8. P and NP

Definition 8.10 FACTOR is the following problem: Given two numbers x
and c in binary, decide whether x has a factor b with 2 ≤ b ≤ c.

Exercise 8.3 Prove the following:

1. FACTOR ∈ NP.

2. FACTOR ∈ co-NP. (You can use that PRIMES ∈ P)



9 The polynomial time hierarchy

Alternating quantifiers

• Give a theoretical computer scientists some operators!

• Teach him recursion!

• Lean back and watch . . .

9.1 Alternating quantifiers

A language L is in NP if and only if there is a polynomial time computable
relation R such that the following holds:

x ∈ L ⇐⇒ ∃P y : R(x, y) = 1.

The string y models the nondeterministic choices of the Turing machine. In
the same way, co-NP is characterized via

x ∈ L ⇐⇒ ∀P y : R(x, y) = 1.

Given such a definition as above, theorists do not hesitate to generalize them
and see what happens: More precisely, a language is in the class ΣP

k if there
is a polynomial-time computable (k + 1)-ary relation R such that

x ∈ L ⇐⇒ ∃P y1∀P y2 . . . Q
P yk : R(x, y1, . . . , yk−1, yk) = 1.

Above, QP stands for ∃P if k is odd and for ∀P otherwise. In the same
way, the classes ΠP

k are defined: A language is in the class ΠP
k if there is a

polynomial-time computable relation R such that

x ∈ L ⇐⇒ ∀P y1∃P y2 . . . Q
P yk : R(x, y1, . . . , yk−1, yk) = 1.

By definition, NP = ΣP
1 and co-NP = ΠP

1 .
The following inclusions are easy to show.

Exercise 9.1 Show that for all k,

ΣP
k ⊆ ΣP

k+1,

ΠP
k ⊆ ΠP

k+1,

ΣP
k ⊆ ΠP

k+1,

ΠP
k ⊆ ΣP

k+1.
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The union of these classes

PH =
⋃
k≥1

ΣP
k =

⋃
k≥1

ΠP
k

is called the polynomial time hierarchy. We have

PH ⊆ PSPACE,

since we can check all possibilities for y1, . . . , yk in polynomial-space.
We can generalize this concept to arbitrary complexity classes. For a

polynomial p, let ∃y, |y| ≤ p(n) be denoted by ∃px. For a language L, and
a polynomial p,

∃pL = {x | ∃py : 〈x, y〉 ∈ L}.

In the same way,
∀pL = {x | ∀py : 〈x, y〉 ∈ L}.

For some complexity class C,

∃C =
⋃

p a polynomial

{∃pL | L ∈ C},

∀C =
⋃

p a polynomial

{∀pL | L ∈ C}.

Theorem 9.1 We have

ΣP
k = ∃∀∃ . . . Q P,

ΠP
k = ∀∃∀ . . . Q P

where each sequence consists of k alternating quantifiers.

Proof. The proof is by induction on k.
Induction base: Clearly, ∃P = NP = ΣP

1 and ∀P = co-NP = ΠP
1 .

Induction step: Let k > 1. We only show the induction step for ΣP
k , the

case ΠP
k is proved in a similar fashion. By the induction hypothesis,

∃∀∃ . . . Q P = ∃ΠP
k−1.

Let L ∈ ∃∀∃ . . . Q P. This means that there is a language A ∈ ΠP
k−1 such

that x ∈ L iff there is some y of polynomial length such that 〈x, y〉 ∈ A.
But there is a relation R such that 〈x, y〉 is in A iff

∀P y1∃P y2 . . . Q
pyk−1 : R(〈x, y〉, y1, . . . , yk−1) = 1.

LetR′ be the relation defined byR′(x, y, y1, . . . , yk−1) = R(〈x, y〉, y1, . . . , yk−1).
Clearly R′ is polynomial time computable iff R is. Thus x ∈ L iff

∃P y∀P y1∃P y2 . . . Q
P yk−1 : R′(x, y, y1, . . . , yk−1) = 1.
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But this means that L ∈ ΣP
k . Thus ∃∀∃ . . . Q P ⊆ ΣP

k . Since the argument
above can be reversed, the opposite inclusion is true, too.

It is an open question whether the polynomial time hierarchy is infinite,
that means, ΣP

i ( ΣP
i+1 for all i. The next theorem shows that in order to

show that the polynomial time hierarchy is not infinite, it suffices to find an
i such that ΣP

i = ΠP
i .

Theorem 9.2 If ΣP
i = ΠP

i , then ΣP
i = ΠP

i = PH.

We need the following lemma for the proof.

Lemma 9.3 For all classes C,

∀∀C = ∀C,
∃∃C = ∃C,

provided that 〈., .〉 and the corresponding inverse projections are linear time
computable and C is closed under linear time transformations of the input.

Proof. We only prove the first statement, the proof of the second one is
similar. Let L be in ∀∀C. This means that there is a language A ∈ ∀C such
that

x ∈ L ⇐⇒ ∀P y : 〈x, y〉 ∈ A

Since A ∈ ∀C, there is some B ∈ C such that

a ∈ A ⇐⇒ ∀P b : 〈x, y〉 ∈ B.

Thus
x ∈ L ⇐⇒ ∀P y∀P b : 〈〈x, y〉, b〉 ∈ B.

Now we want to replace the two quantifiers by one big one quantifying over
〈y, b〉. There is only one technical problem: Words in B are of the form
〈〈x, y〉, b〉 but we need words of the form 〈x, 〈y, b〉〉. Define B′ by

B′ = {〈x, 〈y, b〉〉 | 〈〈x, y〉, b〉 ∈ B}. (9.1)

B′ is again in C, since 〈〈x, y〉, b〉 is computable in linear time from 〈x, 〈y, b〉〉
and C is closed under linear time transformations of the input.

Now we are almost done but there is one little problem left: We cannot
quantify over all 〈y, b〉, we can only quantify over all z ∈ {0, 1}p(n). Some
strings z might not correspond to pairs 〈y, b〉, since either y or b is longer
than the polynomial of the corresponding ∀P -quantifier in (9.1). B′′ now
contains all the words that are in B′ and in addition all words 〈x, z〉 such
that z is not a valid pair. Since we can also find out in linear time, whether
z is a valid pair, B′′ ∈ C, too.
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By construction,

x ∈ L ⇐⇒ ∀P z : 〈x, z〉 ∈ B′′.

Thus L ∈ ∀C.

Technicalities

The condition of linear time computability and being closed under
linear time transformations is fairly arbitrary. Usually, polynomial
time computability and being closed under polynomial time reduc-
tions is enough. But since ∃ and ∀ are pretty general operators, we
have tried to put as few as possible constraints on C.

(Note that there are linear time computable pairing functions.)

Proof of Theorem 9.2. We show that if ΣP
i = ΠP

i , then ΣP
i = ΣP

i+1 =
ΠP
i+1. Then the theorem follows by induction.

We have ΣP
i+1 = ∃ΠP

i . Since ΣP
i = ΠP

i , ΣP
i+1 = ∃ΣP

i . By Theorem 9.1
and Lemma 9.3, ΣP

i+1 = ΣP
i . In the same way we get ΠP

i+1 = ΠP
i . This

proves our claim above.

Most researchers believe that the polynomial time hierarchy is infinite.
So whenever some assumption makes the polynomial time hierarchy col-
lapse, then this assumption is most likely not true (where the probability is
taken over the opinions of all researchers in complexity theory). Here “PH
collapses” means that PH = Σi for some i.

9.2 Complete problems

Let F be a Boolean formula over some variables X. A quantified Boolean
formula is a formula of the form

Q1xi1 . . . QnxinF (x1, . . . , xn).

where each Qi is either ∃ or ∀. (Note that the xi are Boolean variables
here that can attain values from {0, 1} only.) A quantifier alternation is an
index j such that Qj 6= Qj+1, i.e., an existential quantifier is followed by a
universal one or vice versa. We will always assume that there are no free
variables, i.e., the formula is closed.

Definition 9.4 1. QBF is the following problem: Given a closed quanti-
fied Boolean formula, is it true?

2. QBFΣk is the following problem: Given a closed quantified Boolean for-
mula starting with an existential quantifier and with ≤ k−1 quantifier
alternations, is it true?
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3. QBFΠk is the following problem: Given a closed quantified Boolean
formula starting with a universal quantifier and with ≤ k−1 quantifier
alternations, is it true?

We will show in the next chapter that QBF is PSPACE-complete. QBFΣk

and QBFΠk are complete problems for ΣP
k and ΠP

k , respectively.

Exercise 9.2 Show that QBFΣk is ΣP
k -complete.

On the other hand, PH most likely does not have complete problems.

Exercise 9.3 If PH has complete problems, then PH collapses.

9.3 A definition in terms of oracles

For a language A, DTimeA(t) denotes the set of all languages that are decided
by a t time bounded deterministic Turing machine M with oracle A. In the
same way, we define NTimeA(t), DSpaceA(s), and NSpaceA(s). If C is a
set of languages, then DTimeC(t) =

⋃
A∈CDTimeA(t). In the same way, we

define NTimeC(t), DSpaceC(s), and NSpaceC(s). Finally, if T is some set of
functions t : N → N, then DTimeC(T ) =

⋃
t∈T DTimeC(t). We do the same

for NTimeC(T ), DSpaceC(S), and NSpaceC(S).

Let S1 = NP and Si = NPSi−1 . In other words, S2 = NPNP, S3 =

NPNPNP
, and so on. Si is another definition of the polynomial time hierarchy.

More precisely, we have the following theorem, where Pi = co-NPSi−1 .

Theorem 9.5 For all i, ΣP
i = Si and ΠP

i = Pi.

Proof. The proof is by induction on i.

Induction base: For i = 1, we have ΣP
1 = NP = S1 and ΠP

1 = co-NP = P1.

Induction step: Assume that the claim is valid for i. We first show that
ΣP
i+1 ⊆ Si+1. L ∈ ΣP

i+1 if there is a polynomial time computable relation R
such that

x ∈ L ⇐⇒ ∃P y1∀P y2 . . . Q
P yi+1 : R(x, y1, . . . , yi+1) = 1.

Let L′ = {〈x, y〉 | ∀P y2 . . . Q
P yi+1 : R(x, y, y2 . . . , yi+1)}. By construction,

L′ ∈ ΠP
i . By the induction hypothesis, L′ ∈ Pi. The following Turing

machine tests whether x ∈ L:

Input: x

1. Guess a y.

2. Query the oracle to check whether 〈x, y〉 ∈ L′.
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3. Accept if the answer is yes, otherwise reject.

This shows that L ∈ NPPi . But Si = co-Pi. Thus NPSi = NPPi and we
have L ∈ NPSi = Si+1.

To show Si+1 ⊆ ΣP
i+1, let L ∈ Si+1. Let M be a polynomial time

nondeterministic Turing machine M that decides L with an oracle W ∈ Si.
Let M be t time bounded. W.l.o.g. we may assume that in each step M
has at most two nondeterministic choices. Consider M on input x: Let
y ∈ {0, 1}t(|x|) be a string that describes the nondeterministic choices of M
along some computation path. On such a path, M might query W at most
t(|x|) times. Let a ∈ {0, 1}t(|x|) describe the answers to the queries.1

Given y and a, the following function f is polynomial time computable:
f(x, y, a, i) is the ith string that M on input x asks the oracle on the path
given by y provided that the answers to previous oracle queries are as given
by a. f(x, y, a, i) is undefined (represented by some special symbol) if the
oracle is asked fewer than i times. To compute f(x, y, a, i), we just simulate
M and make the nondeterministic choices as given by y and instead of
really asking W , we pretend that the answer is as given by a. With the
same simulation, we can also compute the following relation R given by
R(x, y, a) = 1 iff M accepts x on the path given by y with oracle answers a.
Now we have

x ∈ L ⇐⇒ ∃P 〈y, a〉[R(x, y, a) = 1 ∧
∧

j:aj=1

f(x, y, a, j) ∈W ∧
∧

j:aj=0

f(x, y, a, j) /∈W ]

where an expression involving an undefined f(a, y, j) is always true. Note
that the first part of the expression tests whether M has an accepting path
and the second part verifies whether a contains the correct answers.

Each oracle answer check is either in Si = ΣP
i (positive answers) or in

Pi = ΠP
i (negative answers). Thus we can replace each “f(x, y, a, j) ∈ W”

and “f(x, y, a, j) /∈ W” by a quantified expression with i quantifiers by the
induction hypothesis. We can write all the quantifiers in front and combine
quantifiers in such a way that we get a quantified expression for L with i+1
quantifiers starting with an existential quantifier. Thus L ∈ ΣP

i+1.
ΠP
i+1 = Pi+1 follow from the fact that both classes are the co-classes of

ΣP
i+1 and Si+1, respectively.

1If M asks the oracle τ times, then the first τ bits of a are the answer.
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The main result of this chapter to show that QBF is PSPACE-complete.

Exercise 10.1 If L is PSPACE-hard under polynomial time many one re-
ductions and L ∈ NP, then NP = PSPACE. If L ∈ P, then P = PSPACE.

Theorem 10.1 QBF is PSPACE-complete

Proof. We first show that QBF is in PSPACE. We devise a recursive
procedure: If F is a quantified Boolean formula without any quantifiers, we
can evaluate it in polynomial space using the same procedure that we used
to evaluate Boolean circuits. The problem is even easier, since there are no
variables in the formula but only constants. Let F = QxiF

′. We replace in
F ′ every free occurrence of xi by 0 and by 1, respectively. Let F ′0 and F ′1 be
the resulting formulas. We now recursively evaluate F ′0 and F ′1. If Q is an
∃-quantifier, then F is true iff F ′0 is true or F ′1 is true. If Q is a ∀-quantifier,
then F is true if F ′0 and F ′1 are true.

To implement this procedure, we need a stack whose size is linear in the
number of quantifiers. Thus the total space requirement is surely polynomi-
ally bounded.

Next we show that QBF is PSPACE-hard. Let L be some language in
PSPACE and let M be some polynomially space bounded deterministic Tur-
ing machine with L(M) = L. W.l.o.g. we may assume that M has only one
work tape and no separate input tape. Furthermore, we may assume that M
has a unique accepting configuration. We will encode configurations by bit
strings. We encode the state by some fixed length binary representation and
also the position of the head. (For the head position, the length is fixed for
inputs of the same length.) Each symbol is represented by a binary string
of fixed size, too. The configuration is encoded by concatenating all the bit
strings above. Since the sizes of the concatenated strings are fixed, these
encoding is an injective mapping. Let p(n) be the length of the encoding on
inputs of length n.

Let x be an input of length n. We will construct a formula Fx that is
true iff x ∈ L. Let sx denote the encoding of the start and t the encoding
of the accepting configuration. Note that M can make at most 2p(n) many
steps for some polynomial p.

We will inductively construct a formula Fj(X,Y ). Here X and Y are
disjoint sets of p(n) distinct variables each. Let ξ and η be two encodings of
configurations. Fj(ξ, η) denotes the formula where we assign each variable
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in X a bit from ξ and each variable in Y a bit from η. (Assume that the
variables in X and Y are ordered.) We will construct Fj in such a way that
F (ξ, η) is true iff η can be reached from ξ by M with ≤ 2j steps.

The inductions start is easy: F0(X,Y ) = (X = Y ) ∨ S(X,Y ). Here
X = Y denotes the formula that compares X and Y bit by bit and is true
iff all bits are the same. S(X,Y ) is true if Y can be reached from X in one
step (see the exercise below). The size of F0 is polynomial in n.

For the induction step, the first thing that comes to mind is to mimic
the proof of Savitch’s theorem. We try

Fj(X,Y ) = ∃Z : Fj−1(X,Z) ∧ Fj−1(Z,X).

(“∃Z” means that every Boolean variable in Z is quantified with an exis-
tential quantifier.) While this formula precisely describes what we want, its
size is too big. It is easy to see that the size grows exponentially. Therefore,
we exploit the following trick and use the formula Fj “twice”:

Fj(X,Y ) = ∃C∀A∀B : Fj−1(A,B)∨(¬(A = X∧B = C)∧¬(A = C∧B = Y )).

Here Fj−1(A,B) is used two times, namely if A = X and B = C or A = C
and B = Y . Therefore it checks whether X is reachable from Y within 2j

steps. However, its size now is only polynomial, since when going from Fj−1

to Fj , we only get an additional additive increase of the formula size that is
polynomial.

The final formula now is Qx = Fp(n)(sx, t). By construction, Qx is true
iff x ∈ L.

Exercise 10.2 Construct a formula S such that S(ξ, η) is true iff ξ `M η.
Show that S has polynomial size and can be computed in polynomial time.

Excursus: Games

Many games are PSPACE-hard, more precisely, given a board configuration, de-
ciding whether this is a winning position for one player is PSPACE-hard (but not
necessarily in PSPACE, since many games can go on for more than a polynomial
number of steps).

To talk about complexity, we have to generalize the games to arbitrarily large
boards. For Checkers or the ancient game Go, this is no problem. For Chess, one
has to be a little creative: On a board of size 7n+ 1, one has e.g. 1 king, n queens,
2n bishops, 2n knights, 2n rooks, and 7n+ 1 pawns in each color.

While it looks at a first glance astonishing that many games are PSPACE-hard,
it is rather natural. Being in a winning position means that for all moves of my
opponent I have an answer such that for all moves of my opponent I have an answer
. . . which is a sequence of alternating quantifiers like in QBF.
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Geography: Given a directed graph G with a start node s, two players construct
a path by adding an edge to the front of the path until one player cannot
add an edge anymore since this would reach a node already visited. Decide
whether the first player has a winning strategy on G.

Checkers: Given a board position in a Checkers game, is this a winning position
for white?

Go: Given a board position in a Go game, is this a winning position for white?

Chess: Given a board position in a (generalized) Chess game, is this a winning
position for white?

All of the games are PSPACE-hard, Geography and some variants of Go are
also in PSPACE.

In a symmetric game (i.e, both players can make the same moves and start in
the same configuration) where a player can legally “pass” and in the case of a tie,
the first player is declared to be the winner, the first player will always win. If
the second player had a winning strategy, the first player could steal it by passing.
Thus the board positions used for the hardness results above have to be rather
exotic.



11 The Karp–Lipton Theorem

The class P is precisely the class of all languages that are decided by poly-
nomial size uniform families of circuits. What happens if we drop the uni-
formity constraint? That is, we look at families of polynomial size circuits
but do not care how to construct them. For reasons that will become clear
later, call the resulting class P/poly. Is it then possible that NP ⊆ P/poly?
While not as strong as P = NP, this inclusion would have a huge impact:
One (governments are a clear candidate) just takes a lot of resources and
tries to find the polynomial size circuit for SAT with, say, 10000 variables.
This would break any current crypto-system, for instance.

11.1 P/poly

We defined the class P/poly in terms of circuits. One can also define this
class in terms of Turing machines that take advice.1 Such a Turing machine
has an additional read-only advice tape. On this tape, it gets an additional
advice string, that only may depend on the length of the input.

Definition 11.1 Let t and a be two functions N → N. A language L is
in the class DTime(t)/a if there is a deterministic Turing machine M with
running time t and with an additional advice tape and a sequence of strings
α(n) ∈ {0, 1}a(n) such that the following holds: For all x ∈ L, M accepts
x with α(|x|) written on the advice tape. For all x /∈ L, M rejects x with
α(|x|) written on the advice tape. (The advice string is not counted as part
of the input!)

This definition extends to nondeterministic classes and space classes in
the obvious way. We can also extend the definition to sets of functions T
and A. We define DTime(T )/A =

⋃
t∈T,a∈ADTime(t)/a. If we choose T and

A both to be the class of all polynomials, then we get exactly P/poly.

Lemma 11.2 For all languages L ∈ {0, 1}∗, there is a polynomial time
Turing machine M with polynomial advice accepting L iff L ∈ P/poly.

Proof. Let L be decided by a polynomial time Turing machine M with
polynomial advice. Let x be an input of length n and let α(n) be the
corresponding advice string. Consider α(n) as a part of the input of M .
There is a polynomial size circuit Cn such that Cn(x, α(n)) = 1 iff M with

1Sometimes, Turing machines are smarter than humans.
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input x and advice α(n) accepts and this holds for all x of length n. Now
choose C ′n to be the circuit that is obtained from Cn by considering the x
as the input and treating the bits of α(n) as constants. C ′n is the desired
circuit.

If L is decided by a nonuniform family of polynomial size circuits Ci, then
the nth advice string α(n) is just an encoding of Cn. Circuit evaluation can
be done in polynomial time. Thus, given an input x of length n, we just
have to evaluate Cn at x.

For each input length n, we give the Turing machine an advice α(n).
Note that we do no restrict this sequence, except for the length. In partic-
ular, the sequence need not be to computable at all.

Lemma 11.3 Any tally language L ⊆ {1}∗ is in P/poly.

Proof. For each input length n, we have an advice string of length one.
This string is 1 if 1n ∈ L and 0 otherwise.

There are tally sets that are not computable, for instance

{1n | the nth Turing machine halts on the empy word}.

11.2 The Karp–Lipton Theorem

The Karp–Lipton Theorem states that NP ⊆ P/poly is not very likely, more
precisely, this inclusion collapses the polynomial time hierarchy to the second
level.

If NP ⊆ P/poly, then of course SAT ∈ P/poly. That is, there is a family
Ci of polynomial size circuits for SAT. Ci is a circuit that decides whether
a given formula of length exactly i is satisfiable or not. But we can also
assume that there is a family Di of polynomial size circuits such that Di

decides whether a given formula of size at most i is satisfiable. Di basically
is “the union” of C1, . . . , Ci. Its size is again polynomial.

Lemma 11.4 Let Di be a family as described above. Then there is a poly-
nomial time computable function h such that h(F,D|F |) is a satisfying as-
signment for F iff F is a satisfiable formula.

Proof. We use the downward self-reducibility for SAT. Choose a variable
in F and set it to zero and to one, respectively. Let F0 and F1 be the
corresponding formulas. Their length is at most the length of F . Now
evaluate D|F | to check whether F0 or F1 is satisfiable. If one of them is,
say F0, then we can construct a satisfying assignment for F by setting the
chosen variable to zero and proceed recursively with F0.

Theorem 11.5 (Karp–Lipton) If NP ⊆ P/poly, then ΠP
2 ⊆ ΣP

2 .
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Proof. Let A ∈ ΠP
2 = ∀∃P = ∀NP. Then there is a language B ∈ NP

such that for all x,

x ∈ A ⇐⇒ ∀P y : 〈x, y〉 ∈ B.

Since B ∈ NP, there is a polynomial time many one reduction f from B to
SAT. In other words, for all x,

x ∈ B ⇐⇒ f(x) ∈ SAT.

Thus for all x,
x ∈ A ⇐⇒ ∀P y : f(〈x, y〉) ∈ SAT.

f(z) is polynomially bounded for all z. Since y is polynomially bounded,
too, f(〈x, y〉) is polynomially bounded in |x|.

Let Di be a sequence of polynomial size circuits for SAT as constructed
above. By Lemma 11.4, for all x,

x ∈ A ⇐⇒ ∀P y : h(f(〈x, y〉), D|f(〈x,y〉)|) satisfies f(〈x, y〉),

where h is the function constructed in Lemma 11.4.
Note that we only know that the family Di exists. It could be very hard

to construct it. But we can use the power of the ∃ quantifier and guess the
correct circuit! Since f(〈x, y〉) is polynomially bounded in |x|, the size of
D|f(〈x,y〉)| is bounded by p(|x|) for some appropriate polynomial. Thus, for
all x,

x ∈ A ⇐⇒ ∃PD : D is a circuit with |f(〈x, y〉)| inputs

∀P y : h(f(〈x, y〉), D) satisfies f(〈x, y〉).

Note that we implicitly check whether D was the right guess since we verify
that h produced a satisfying assignment. Even if this assignment is produced
with a “wrong” circuit, we are still happy. Hence, A ∈ ΣP

2 .

Note that already ΠP
2 ⊆ ΣP

2 collapses the polynomial time hierarchy to
the second level. We only showed it under the condition that ΠP

2 = ΣP
2 .

But ΠP
2 ⊆ ΣP

2 is sufficient to show that ΣP
2 = ΣP

3 (apply an ∃). Then also
ΠP

2 = ΠP
3 , since these are co-classes. From this, we get the collapse.
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In this chapter, we have a relativized look at the P versus NP question and
related questions. More precisely, we will investigate the classes PA and
NPA for some oracle A. It turns out, that there are oracles for which these
two classes coincide and there are oracles for which these two classes are
different. While this does not say much about the original question, it shows
an important property that a proof technique should possess if it is capable
to resolve the P versus NP question. This technique should not “relativize”,
i.e., it should not be able to resolve the question PA versus NPA for arbitrary
A. The usual simulation techniques and diagonalization relativizes, in fact,
almost all of the techniques from recursion theory relativize.

12.1 P and NP

Theorem 12.1 PA = NPA for all PSPACE-complete A.

Proof. Let A be PSPACE-complete. Let L be in NPA. Let M be a non-
deterministic polynomially time bounded Turing machine with L(MA) =
L. M can ask only a polynomial number of questions to A on every
branch. Each of them is only polynomially long. Thus L ∈ PSPACEA.
But PSPACEA = PSPACE, since instead of querying the oracle A, we can
just simulate a polynomially space bounded Turing machine for A.

Since A is PSPACE-hard, there is a many one reduction from any lan-
guage in PSPACE to A. In particular, PSPACE ⊆ PA, since a many one
reduction is also a Turing reduction. Putting everything together, we get

PA ⊆ NPA ⊆ PSPACEA = PSPACE ⊆ PA.

For a languageB ∈ {0, 1}∗, let tally(B) = {#n | there is a word of length n in B}.
A nondeterministic Turing machine M with oracle B can easily decide
tally(B). On input #n, it just guesses a string x ∈ {0, 1}n and verifies
whether x ∈ B by asking the oracle. If yes, it accepts; otherwise, it rejects.

More precisely: When M reads the input string, it can directly guess
the string x on the oracle tape. This takes n steps. When it reads the first
blank on the input tape, it enters the query state and gets the answer (one
step). Then it just has to check whether the answer on the input tape is 0
or 1 (one step). Thus tally(B) ∈ NTimeB(n+ 2) ⊆ NPB.

Lemma 12.2 There is a B ∈ EXP such that tally(B) /∈ DTimeB(2n).
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Proof. In a similar way like we have encoded Turing machines as binary
strings, we can also encode oracle Turing machines. The encoding is essen-
tially the same, we just have to mark the oracle tape and the query and
answer state. By taking the lexicographic ordering on these strings, we get
an ordering of the Turing machines.

We construct B iteratively. In the nth iteration, we add at most one
string xn of length n. Bn denotes the set that we have constructed in the
first n iterations. We also have a set F of forbidden strings that shall not
appear in B. This set is also constructed iteratively, Fn denotes the set that
we have constructed in the first n iterations so far.

The nth iteration looks as follows. We simulate the nth Turing machine
Mn with oracle Bn−1 (with respect to the ordering defined above) on #n for

exactly 2n steps. M
Bn−1
n can query at most 2n−1 different strings, since for

each query, we need one step to get the result and at least one step to write
an oracle string. (In fact there are even fewer strings that the machine can
query, since the oracle strings have to get longer and longer and the oracle
tape is erased every time.) Let Sn be the set of strings that M

Bn−1
n queries.

Set Fn = Fn−1 ∪ Sn. If M
Bn−1
n halts and rejects, we set Bn = Bn−1 ∪ {xn}

for an arbitrary string in {0, 1}n \ Fn. Otherwise, we set Bn = Bn−1.

We have to check that the string xn always exists. Since a Turing ma-
chine can query at most 2i−1 strings in 2i steps,

|
⋃

1≤i≤n
Si| ≤

n∑
i=1

2i−1 < 2n.

Hence xn exists.

Next we show that tally(B) is not accepted by a deterministic Turing
machine with running time 2n. Assume that Mn is such a machine. MB

n

behaves like M
Bn−1
n on input #n, since all strings that are queried by Mn

are in Sn. These strings are not in B by construction. Hence Bn−1 and B
do not contain any of the strings queried by Mn.

The assumption thatMB
n decides #n ∈ tally(B) correctly within 2n steps

yields a contradiction: If #n /∈ tally(B), then M
Bn−1
n would reject #n, but

then B would contain a string of length n, namely xn, and #n ∈ tally(B),

a contradiction. If #n ∈ tally(B), then M
Bn−1
n would accept, but then

Bn = Bn−1 and B would not contain a string of length n which implies that
#n /∈ tally(B), a contradiction.

Thus it remains to show that B ∈ EXP.1 To decide whether a given x
of length n is in B we enumerate the first n Turing machines and simulate
them on #i. In this way, we can compute Bn. Once we have Bn, we can
decide whether x ∈ B, since in later iterations, only longer strings are added

1This statement is only needed to say something about the complexity of B. We want
to find an “easy” oracle.



12.2. PH and PSPACE 63

to B. The ith simulation needs time 2O(i). One oracle query is simulated
by a look up in the table for Bi−1. Thus the total running time is 2O(n).

Note that the oracle B achieves the largest possible gap between deter-
minism and nondeterminism: tally(B) is in linear time recognizable by a
nondeterministic Turing machine with oracle B but cannot be accepted by
a 2n time bounded deterministic Turing machine.

Exercise 12.1 Prove that tally(B) ∈ DTimeB(2O(n)).

Theorem 12.3 There is a language B ∈ EXP such that PB 6= NPB.

Proof. Let B be the language from Lemma 12.2. We have tally(B) ∈
NPB and tally(B) /∈ DTimeB(2n). But then tally(B) cannot be in PB.

Pitfalls

It is not clear how to speed up oracle computations by arbitrary
constant factors, since this could mean asking two queries in one step.

12.2 PH and PSPACE

In this section we will show the first part of a clever construction that
separates PH from PSPACE with respect to some oracle. Before we can do
so, we first have to define what PHB means! We can set PHB =

⋃
d(Σ

P
d )B,

so it remains to define (ΣP
d )B. Let M be a polynomial time deterministic

oracle Turing machine such that M with oracle B computes some (d+1)-ary
relation RB(x, y1, . . . , yd). Then the language L defined by

x ∈ L ⇐⇒ ∃P y1∀P y2 . . . Qyd : RB(x, y1, . . . , yd) = 1

is in (ΣP
d )B.

The separation result for PH and PSPACE depends on a lower bound
for the size of Boolean circuits with unbounded fanin. A Boolean circuit
with unbounded fanin is a Boolean circuit that can have inner nodes of
arbitrary fanin. These nodes are labeled with ∨ or ∧ and compute the
Boolean conjunction or disjunction of the inputs. The size of the circuit is
the number of nodes in it plus an additional d − 2 for every node of fanin
d > 2. The lower bound that is needed for the separation result below will
be shown in the next chapter. In the following, PARITY is the set of all
x ∈ {0, 1}∗ that have an odd number of ones, i.e., the parity of x is 1.
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Theorem 12.4 (Furst, Saxe & Sipser) If for all constants d, c ≥ 1, there
does not exist any family of unbounded fanin Boolean circuits of depth d
and size 2O(logc n) computing PARITY, then there is an oracle B such that
PHB 6= PSPACEB.

Proof overview: For a language A ⊆ {0, 1}∗, let A=n := A∩{0, 1}n be the
subset of all strings of length n. For any set A let

π(A,n) =

{
1 if |A=n| is odd

0 otherwise

In other words π(A,n) is the parity of the number of words of length n in
A. Let P (A) = {0n | π(A,n) = 1}. We now view the characteristic vector a
of all strings of length n of A as an input of length 2n. Then PARITY(a) = 1
iff 0n ∈ P (A). In this way, the oracle becomes the input of the circuit.

We will have the following mapping of concepts:

characteristic vectors of A 7→ inputs of circuit
relation R 7→ small subcircuits
quantifiers 7→ unbounded fanin ∨ and ∧

Proof. Let P (A) be defined as above. We first show that there is a linear
space bounded Turing machine M that given an oracle A, recognizes P (A):

Input: x ∈ {0, 1}∗

1. If x /∈ {0}∗, then reject.

2. c := 0.

3. Enumerate all strings y in {0, 1}|x|, check whether y ∈ A, and if yes,
then c := c+ 1 mod 2.

4. If c = 1 accept, else reject.

In particular, P (A) ∈ PSPACEA.
Let R be a (d + 1)-ary relation. We call R good for length n if for all

oracles A,

0n ∈ P (A) ⇐⇒ ∃P y1∀P y2 . . . Qyd : RA(0n, y1, . . . , yd).

We now show that if a relation R is good for almost all lengths n (here used in
the sense of “for all but finitely many”) and can be computed in polynomial
time, then we get a family of circuits that violates the assumption of the
theorem.

Let N be a polynomial time bounded deterministic oracle Turing ma-
chine. We call N a fool if the following holds: For all n0, for all X ⊆



12.2. PH and PSPACE 65

{0, 1}≤n0 , and for infinitely many n > n0, there exists a Y ⊆ {0, 1}>n0 such
that NX∪Y errs on computing RX∪Y (0n, y1, . . . , yd).

If N is not a fool, then we call N wise. For a wise N , there exists an n0

and an X as above such that, for all but a finite number of n > n0, NX∪Y

computes RX∪Y (0n, y1, . . . , yd) correctly for all Y .

We can assume that N does not query strings of length ` 6= n and ` > n0.
If N attempts to query such strings, then we can give it any value back since
N has to answer correctly for all Y . Furthermore, there are only a finite
number of strings of length at most n0. Thus, instead of asking the oracle
X ∪ Y , the set X can be hard-wired into N . We will now show that wise N
do not exist.

For fixed n, we can view the characteristic vector a of all strings of
length n of A as an additional input of R; thus R becomes a function
rn(y1, . . . , yd, a) := RA(0n, y1, . . . , yd).

Since N is p(n) time bounded for some polynomial p, it can query the
oracle at most p(n) times for fixed n, y1, . . . , yd. We now fix y1, . . . , yd, and
get a function rn,y1,...,yd(a) := rn(y1, . . . , yd, a). The words that N queries
may however depend on the answers to previous queries. We now simulate
N on 0n, y1, . . . , yd. Whenever N queries the oracle, we simulate it with
possible answer 0 and with possible answer 1. We get a binary tree T of
depth p(n). The nodes are labeled with the corresponding strings queried
and the edges are labeled with 0 or 1, the answer of the oracle to the query.

From this tree T , we get a formula Bn,y1,...,yd of depth two and size
O(p(n) · 2p(n)) that computes rn,y1,...,yd :

rn,y1,...,yd(a) =
∨

accepting paths P of T

a
eP1
iP1
∧ · · · ∧

eP
p(n)

iP
p(n)

In this disjunction, iP1 , . . . , i
P
p(n) are the indices of the strings queried on

the path P (i.e., the labels of the nodes along P ) and eP1 , . . . , e
P
p(n) are the

answers on the path P (i.e., the labels of the edges along P ). Above, we use
the convention x1 = x and x0 = ¬x for a Boolean variable x.

Bn,y1,...,yd can be constructed by just simulating N for each possible
outcome of the queries in space p(n) (given y1, . . . , yd).

Thus we get

0n ∈ P (A) ⇐⇒
∨
y1

∧
y2

∨
y3

. . . Bn,y1,...,yd(a).

But the righthand side is a circuit Cn of depth d + 2 for PARITY. Its size
is O(2dq(n)+p(n)) where q is a bound on the length of y1, . . . , yd. It can be
constructed in space O(dq(n) + p(n)) which is logarithmic in the size. The
number of inputs is m := 2n. With respect to the number of inputs, the size
of Cn is 2O(logcm) for some constant c.
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Thus, if N is wise, then we can construct a family Cn that contradicts
the assumption of the theorem. We only have circuits of input lengths 2n

but we can get a circuit for parity of any length ` out of it by rounding to
the nearest power of 2 and then setting an appropriate number of inputs to
0.

Finally, we construct the oracle B separating PHB from PSPACEB by
diagonalization. Every polynomial time Turing machine Ni that computes
a potential relation Ri, is a fool. We now construct B inductively. For
every candidate Ri, we choose a number ni > ni−1 that is greater than all
previously chosen numbers such that, for all X ∈ {0, 1}≤ni−1 , there exists
a Y ∈ {0, 1}>ni−1 such that Ni errs in computing RX∪Y for length ni. In
particular, for

⋃
`≤ni−1

Bi, there exist Yi and ni with that property. We set
Bi = Yi ∩ {0, 1}ni and B =

⋃
iBi. Ni with oracle B computes a relation

that is not good for ni, since we can always assume that Ni on input 0n only
queries strings of length n. Thus no Ri with oracle B is good for length ni
and hence, P (B) /∈ PHB.

Remark 12.5 We can reduce the depth of Cn to d+1 by choosing B to be in
CNF or DNF. We can then bring it down even to d by using the distributive
laws and the fact that the gates at the bottom have fanin only p(n).

Excursus: Random oracle hypothesis

Not long after Theorem 12.3 was proven, Bennett and Gill showed that with respect
to a random oracle A, i.e., every word x is in A with probability 1/2, PA 6= NPA with
probability 1. This observation led to the random oracle hypothesis: Whenever a
separation result is true with probability 1 with respect to a random oracle, then the
unrelativized result should also be true. It was finally shown that IPA 6= PSPACEA

with probability 1 with respect to a random oracle. We will prove that IP = PSPACE
later on (and of course define IP).
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13.1 Randomized complexity classes

Probabilistic Turing machines have an additional random tape. On this tape,
the Turing machine gets an one-sided infinite {0, 1} string y. The random
tape is read-only and one-way.

Right at the moment, we are considering the random string y as an
additional input. The name random string is justified by the following defi-
nition: A probabilistic Turing machine accepts an input x with acceptance
probability at least p if Pr[M(x, y) = 1] ≥ p. Here the probability is taken
over all choices of y. We define the rejection probability in the same way.
The running time t(n) of a probabilistic Turing machine M is the maximum
number of steps that M performs on any input of length n and and any
random string y. Note that if t(n) is bounded, then we can consider y to
be a finite string of length at most t(n). The maximum number of random
bits a Turing machine reads on any input x of length n and random string
y is called the amount of randomness used by the machine.

We define RTime(t(n)) to be the class of all languages L such that there
is a Turing machine M with running time t(n) and for all x ∈ L, M accepts x
with probability at least 1/2 and for all x /∈ L, M rejects L with probability
1. Such an M is said to have a one-sided error. If M in fact accepts each
x ∈ L with probability ≥ 1− ε ≥ 1/2, then we say that the error probability
of M is bounded by ε.

The class BPTime(t(n)) is defined in the same manner, but we allow the
Turing machine M to err in two ways. We require that for all x ∈ L, M
accepts x with probability at least 2/3 and for all x /∈ L, M rejects with
probability at least 2/3 (that is, accepts with probability at most 1/3). Such
an error is called a two-sided error. If M actually accepts all x ∈ L with
probability ≥ 1 − ε and accepts each x /∈ L with probability ≤ ε, then we
say that the error probability is bounded by ε.

Definition 13.1 1. RP =
⋃
i∈N RTime(ni),

2. BPP =
⋃
i∈N BPTime(ni),

3. ZPP = RP ∩ co-RP.

The name ZPP stands for zero error probabilistic polynomial time. It is
justified by the following statement.
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Exercise 13.1 A language L is in ZPP if and only if L is accepted by a
probabilistic Turing machine with error probability zero and expected poly-
nomial running time. Here the expectation is taken over all possible random
strings on the random tape.

For robust classes (such as RP and BPP) the choice of the constants 1/2
and 2/3 in the definitions of RTime and BPTime is fairly arbitrary, since
both classes allow probability amplification.

Lemma 13.2 Let M be a Turing machine for some language L ∈ RP that
runs in time t(n), uses r(n) random bits, and has error probability ε. For
any k ∈ N, there is a Turing machine M ′ for L that runs in time O(kt(n)),
uses kr(n) random bits, and has error probability εk.

Proof. M ′ works as follows:

Input: x ∈ {0, 1}∗

1. M ′ simulates M k times, each time using new random bits.

2. M ′ accepts, if in at least one of the simulations, M accepts. Otherwise,
M ′ rejects.

The bounds on the time and randomness are obvious. If x /∈ L, then M ′

also rejects, since M does not err on x. If x ∈ L, then with probability at
most ε, M rejects x. Since M ′ performs k independent trials, the probability
that M ′ rejects x is at most εk.

Lemma 13.3 Let M be a Turing machine for some language L ∈ BPP that
runs in time t(n), uses r(n) random bits, and has error probability ε < 1/2.
For any k ∈ N, there is a Turing machine M ′ for L that runs in time
O(kt(n)), uses kr(n) random bits, and has error probability 2−cεk for some
constant cε that solely depends on ε.

Proof. M ′ works as follows:

Input: x ∈ {0, 1}∗

1. M ′simulates M k times, each time with fresh random bits.

2. M ′ accepts, if in at least half of the simulations (rounded up), M
accepts. Otherwise, M ′ rejects.

Let µ be the expected number of times that a simulated run ofM accepts.
If x ∈ L, then µ ≥ (1 − ε)k. The probability that less than half of the

simulated runs of M accept is < e−
(1−ε)δ2

2
k with δ = 1 − 1

2(1−ε) by the
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Chernoff bound (see below). The case x /∈ L is treated similarly. In both
cases, the error probability is bounded by 2ck for some constant c only
depending on ε.

Remark 13.4 In both lemmas, k can also be a function in n, as long as k
is computable in time O(k(n)t(n)). (All reasonable functions k are.)

In the proof above, we used the so-called Chernoff bound. A proof of it
can be found in most books on probability theory.

Lemma 13.5 (Chernoff bound) Let X1, . . . , Xm be independent 0–1 val-
ued random variables and let X = X1 + · · ·+Xm. Let µ = E(X). Then for
any δ > 0,

Pr[X > (1 + δ)µ] <

(
eδ

(1 + δ)1+δ

)µ
and Pr[X < (1− δ)µ] < e−

µδ2

2 .

We have

P ⊆ ZPP ⊆ RP

co-RP
⊆ BPP. (13.1)

The latter two inclusions follow by amplifying the acceptance probability
once.

Exercise 13.2 Let PP be the class of all languages L such that there is a
polynomial time probabilistic Turing machine M that accepts all x ∈ L with
probability ≥ 1/2 and accepts all x /∈ L with probability < 1/2. Show that
NP ⊆ PP.

13.2 Relation to other classes

We start with comparing RP and BPP with non-randomized complexity
classes. The results in this section are the basic ones, further results will
be treated in the lecture “Pseudorandomness and Derandomization” in the
next semester.

Theorem 13.6 BPP ⊆ PSPACE.

Proof. Let M be polynomial time bounded Turing machine with error
probability bounded by 1/3 for some L ∈ BPP. Assume that M reads at
most r(n) random bits on inputs of length n. Turing machine M ′ simulates
M as follows:

Input: x ∈ {0, 1}∗

1. M ′ systematically lists all bit strings of length r(n).
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2. M ′ simulates M with the current string as random string.

3. M ′ counts how often M accepts and rejects.

4. If the number of accepting computations exceeds the number of re-
jecting computations, M ′ accepts. Otherwise, M ′ rejects.

Since M is polynomial time, r(n) is bounded by a polynomial. Hence
M ′ uses only polynomial space.

Corollary 13.7 BPP ⊆ EXP.

Theorem 13.8 RP ⊆ NP.

Proof. Let M be a polynomial time probabilistic Turing machine with
error probability bounded by 1/2 for some L ∈ RP. We convert M into
a nondeterministic machine M ′ as follows: Whenever M would read a bit
from the random tape, M ′ nondeterministically branches to the two states
that M would enter after reading zero or one, respectively.

If M does not accept x, then there is no random string such that M on
input x reaches an accepting configuration. Thus there is no accepting path
in the computation tree of M ′ either.

On the other hand, if M accepts x, then M reaches an accepting con-
figuration on at least half of the random strings. Thus at least half of the
paths in the computation tree of M ′ are accepting ones. In particular, there
is at least one accepting path. Hence M ′ accepts x.

NP and RP

NP: one proof/witness of membership
RP: many proofs/witnesses of membership

Next we turn to the relation between BPP and circuits.

Theorem 13.9 (Adleman) BPP ⊆ P/poly.

Proof. Let L ∈ BPP. By Lemma 13.3, there is a polynomial time
bounded probabilistic Turing machine with error probability < 2−n that
accepts L. There are 2n possible input strings of length n. Since for each
string x of length n, the error probability of M is < 2−n, M can err on x
only for a fraction of all possible random strings that is smaller than 2−n.
Thus there must be one random string that is good for all inputs of length
n. We take this string as an advice string for the inputs of length n. By
Lemma 11.2, L ∈ P/poly.
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How do we find this good random string? If we amplify the error proba-
bility even further, say to 2−2n, then almost all, namely a fraction of 1−2−n

random strings are good. Thus picking the advice at random is a good
strategy. (This, however, requires randomness!)

13.3 Further exercises

Exercise 13.3 Show the following: If SAT ∈ BPP, then SAT ∈ RP. (Hint:
downward self-reducibility).

The answer to the following question is not known.

Open Problem 13.10 Prove or disprove: RP = P implies BPP = P.



14 The BP-operator

BPP extends P by adding randomness to the computation but all other prop-
erties of P stay the same. In this section, we introduce a general mechanism
of adding randomness to a complexity class.

Definition 14.1 Let C be a class of languages. The class BP-C is the class
of all languages A such that there is a B ∈ C, a polynomial p, and constants
α ∈ (0, 1) and β > 0 such that for all inputs x:

x ∈ A =⇒ Pr
y∈{0,1}p(|x|)

[〈x, y〉 ∈ B] ≥ α+ β/2,

x /∈ A =⇒ Pr
y∈{0,1}p(|x|)

[〈x, y〉 ∈ B] ≤ α− β/2,

α is called the threshold value and β is the probability gap. Note the
similarity to the ∃- and ∀-operators.

Exercise 14.1 Prove that BPP = BP-P.

14.1 Probability amplification

Definition 14.2 Let C be a class of languages. BP-C allows probability
amplification if for every A ∈ BP-C and every polynomial q, there is a
language B ∈ C and a polynomial p such that for all inputs x:

x ∈ A =⇒ Pr
y∈{0,1}p(|x|)

[〈x, y〉 ∈ B] ≥ 1− 2−q(|x|)

x /∈ A =⇒ Pr
y∈{0,1}p(|x|)

[〈x, y〉 ∈ B] ≤ 2−q(|x|)

We would like to be able to perform probability amplification. For BPP,
we ran the Turing machine several times and took a majority vote. Now the
key point is that the resulting machine is again a probabilistic polynomial
time machine.

A sufficient condition for a class C to allow probability amplification is
that for all L ∈ C, PL ∈ C, i.e., C is closed under Turing reductions. But
this is a too strong restriction, since it is not clear whether for instances NP
is closed under Turing reductions. However, a weaker condition also suffices.

Definition 14.3 1. A positive polynomial time Turing reduction from
a language A to a language B is a polynomial time Turing machine R
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such that A = L(RB) and R has the following monotonicity property:
if D ⊆ D′ then L(RD) ⊆ L(RD

′
) for all languages D, D′. We write

A ≤T+
P B in this case.

2. Let B be a language and C be a class of languages. We define Pos(B) =
{A | A ≤T+

P B} and Pos(C) = {A | A ≤T+
P B for some B ∈ C}.

Exercise 14.2 Prove the following: Pos(NP) = NP.

Lemma 14.4 Let C be closed under positive polynomial time Turing reduc-
tions. Then BP-C allows probability amplification.

Proof. Let A ∈ BP-C and let D ∈ C, α ∈ (0, 1), and β > 0 such that the
conditions in Definition 14.1 holds. Let q be a polynomial.

Let k = k(|x|) be some integer to be chosen later. The language B now
consists of all 〈x, y1, . . . , yk〉 such that for more than αk indices i, 〈x, yi〉 ∈ D.
(I.e., the yκ serve as fresh random strings for k independent trials. We then
take a majority vote.)

Since there is a positive Turing reduction from B to D (if D ⊆ D′,
then 〈x, yi〉 ∈ D of course implies 〈x, yi〉 ∈ D′), B ∈ C. If we now choose
k = O(q(|x|)), then the error probability goes down to 2−q(|x|) (as already
seen for BPP).

Exercise 14.3 Show the following: If BP-C allows probability amplifica-
tion, then BP-BP-C = BP-C.

14.2 Operator swapping

Lemma 14.5 If C is closed under Pos, then

1. ∃BP-C ⊆ BP-∃C,

2. ∀BP-C ⊆ BP-∀C,

Proof. Let A ∈ ∃BP-C. By assumption, there is a language B ∈ BP-C
such that for all x,

x ∈ A ⇐⇒ ∃P b : 〈x, b〉 ∈ B. (14.1)

In particular, x ∈ A depends only on B≤p(|x|), the strings in B of length at
most p(|x|) for some polynomial p.

Since BP-C allows probability amplification, for every polynomial q,
there is a language D ∈ C and a polynomial r such that for all inputs
y:

y ∈ B =⇒ Pr
z∈{0,1}r(|y|)

[〈y, z〉 ∈ D] ≥ 1− 2−q(|y|),

y /∈ B =⇒ Pr
z∈{0,1}r(|y|)

[〈y, z〉 ∈ D] ≤ 2−q(|y|).
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Set q(n) = 2n+ 3. It follows that for all n:

Pr
z

[for all y with |y| ≤ p(n): y ∈ B ⇐⇒ 〈y, z〉 ∈ D] ≥ 1−
p(n)∑
ν=0

2−q(ν) · 2ν

≥ 1− 1/4

= 3/4,

by the union bound. For a string z, let Y (z) := {y | 〈y, z〉 ∈ D}. Thus for
all n

Pr
z

[B≤p(n) = Y (z)≤p(n)] ≥ 3/4.

This means that for a random z, Y (z)≤p(n) behaves like B≤p(n) with high
probability. Finally set

E = {〈x, z〉 | ∃P b 〈x, b〉 ∈ Y (z)≤p(|x|))}
= {〈x, z〉 | ∃P b 〈〈x, b〉, z〉 ∈ D ∧ |〈x, b〉| ≤ p(|x|)}.

Since D ∈ C, E ∈ ∃C, as C is closed under Pos. (To test the predicate,
we first check whether |〈x, b〉| ≤ p(|x|), and if it is, we then query D.) This
means that in (14.1), we can replace the righthand side by

“for a fraction of ≥ 3/4 of all z, 〈x, z〉 ∈ E”.

Thus A ∈ BP-∃C.

The case of ∀ is shown in exactly the same way.

Exercise 14.4 Show that if NP ⊆ BPP, then ΣP
2 ⊆ BPP (and even PH ⊆

BPP).

14.3 BPP and the polynomial hierarchy

For two strings u, v ∈ {0, 1}m, u⊕ v denotes the string that is obtained by
taking the bitwise XOR.

Lemma 14.6 (Lautemann) Let n > logm. Let S ⊆ {0, 1}m with |S| ≥
(1− 2−n)2m.

1. There are u1, . . . , um such that for all v, ui⊕v ∈ S for some 1 ≤ i ≤ m.

2. For all u1, . . . , um there is a v such that ui ⊕ v ∈ S for all 1 ≤ i ≤ m.

Proof.
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1. We have

Pr
u1,...,um∈{0,1}m

[∃v : u1 ⊕ v, . . . , um ⊕ v /∈ S]

≤
∑

v∈{0,1}m
Pr

u1,...,um∈{0,1}m
[u1 ⊕ v, . . . , um ⊕ v /∈ S]

=
∑

v∈{0,1}m

m∏
i=1

Pr
ui∈{0,1}m

[ui ⊕ v /∈ S]

≤ 2m · (2−n)m

< 1,

since ui⊕v distributed uniformly in {0, 1}m and all the ui’s are drawn
independently. Since the probability that a v with the desired proper-
ties does not exist is < 1, there must be a v that fulfills the assertions
of the first claim.

2. Fix u1, . . . , um. We have

Pr
v∈{0,1}m

[∃i : ui ⊕ v /∈ S] ≤
m∑
i=1

Pr
v∈{0,1}m

[ui ⊕ v /∈ S]

≤ m · 2−n

< 1.

Thus a v exists such that for all i, ui ⊕ v ∈ S. Since u1, . . . , um were
arbitrary, we are done.

Lemma 14.7 Let C be a complexity class such that Pos(C) = C. Then

1. BP-C ⊆ ∃∀C and

2. BP-C ⊆ ∀∃C.

Proof. Let A be a language in BP-C. Since C is closed under Pos,
we can do probability amplification: There is a language B ∈ C and some
polynomial p such that for all x,

x ∈ A =⇒ Pr
y∈{0,1}p(|x|)

[〈x, y〉 ∈ B] ≥ 1− 2−n,

x /∈ A =⇒ Pr
y∈{0,1}p(|x|)

[〈x, y〉 ∈ B] ≤ 2−n.
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Let Tx = {y | 〈x, y〉 ∈ B}. If x ∈ A, then |Tx| ≥ (1 − 2−n)2p(|x|). In
this case, the first statement of Lemma 14.6 is true. If x /∈ A, then |T̄x| ≥
(1 − 2−n)2p(|x|). Thus the second statement of Lemma 14.6 is true for T̄x.
But this is the negation of the first statement for Tx. Hence

x ∈ A ⇐⇒ ∃Pu1, . . . , up(|x|)∀P v : u1 ⊕ v ∈ Tx ∨ · · · ∨ up(|x|) ⊕ v ∈ Tx.

The relation on the righthand side clearly is in Pos(C), and hence, A ∈ ∃∀C.
In the same way, we get A ∈ ∀∃C, since if x ∈ A, then also the second

statement of Lemma 14.6 is true for Tx and if x /∈ A, then the first statement
is true for T̄x.

Corollary 14.8 (Sipser) BPP ⊆ ΣP
2 ∩ΠP

2 .

Corollary 14.9 If P = NP, then P = BPP.



15 Testing polynomials for zero

In 1977, Solovay and Strassen proposed a new type of algorithm for testing
whether a given number is a prime, the celebrated randomized Solovay-
Strassen primality test. This test and similar ones proved to be very use-
ful. This fact changed the common notion of “feasible computations” to
probabilistic polynomial time algorithms with bounded error. Since then,
the field of randomized algorithms flourished, with primality being one of
its key problems. “Unfortunately”, Agrawal, Kayal, and Saxena recently
proved that primality can be decided in deterministic polynomial time, tak-
ing away one of the main arguments for probabilistic computations.

In this chapter, we look at another important problem, algebraic circuit
identity testing—ACIT for short, that has a polynomial time randomized
algorithm but for which we do not have a deterministic one.

Note that we do not know whether BPP and RP have complete problems.
Thus we cannot show that ACIT is BPP-complete or something like that.
Even a generic problem as the set of all triples 〈M,x, 1t〉 such that M is a
polynomial time probabilistic machine with error probability at most 1/3
that accepts x within t steps is not BPP-complete. It is BPP-hard, but
not in BPP, since it is even undecidable whether the error probability of
M is bounded by 1/3. Being a BPP-machine is a semantic property, while
being an NP-machine is a syntactic one.1 (One way out of this dilemma are
so-called partial languages or promise problems. There is a version of BPP
called promise-BPP that naturally has complete problems.)

So, can the same happen to ACIT and AFIT what happened to PRIMES?
Can we show that ACIT and AFIT, the remaining prominent problems for
which we do not have a deterministic polynomial time algorithm, are in P
without settling whether any bounded error probabilistic polynomial time al-
gorithm can be derandomized? Recently, Kabanets and Impagliazzo showed
that derandomizing ACIT and AFIT will immediately prove circuit lower
bounds, a notorious hard problem.

1While it is not decidable whether a Turing machine is p(n) time bounded, we can
enumerate all Turing machines and add to each Turing machine a counter that counts
the steps up to p(n). There does not seem to exist an analogue for probabilistic Turing
machines.
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15.1 Arithmetic circuits

Consider the following task: Given a polynomial p of degree d in n variables
X1, . . . , Xn over Z, decide whether p is identically zero. If the coefficients of p
are given, then this task is of course easy. Representing a polynomial in such
a way might not be that clever, since it has

(
d+n
n

)
coefficients. Represent-

ing polynomials by arithmetic formulas or circuits often is a much better
alternative. We can efficiently evaluate the determinant, for instance by
Gaussian elimination. Gaussian elimination treats the entries of the matrix
as entities and computes the determinant using only arithmetic operations.
This gives an arithmetic circuit for the determinant. (This is not quite true
since there is the issue of pivoting and we would also need equality tests.
But if we consider the entries of the input matrix as indeterminates, then
no pivoting is necessary.)

An arithmetic circuit is an acyclic directed graph with exactly one node
of outdegree zero, the output gate. Each gate has either indegree zero or two.
A gate with degree zero is either labeled with a constant from Z or with a
variable Xi. A gate of indegree two is either labeled with “+” (addition
gate), “×” (multiplication gate), or “/” (division gate). In the latter case,
we have to ensure that there is no division by zero (as a rational function).
For simplicity, we will solely deal with division-free circuits in the following.
(There is a general way to efficiently eliminate divisions when one wants
to compute a polynomial due to Strassen.) An arithmetic formula is an
arithmetic circuit where all gates except the output gate have outdegree
one, i.e., the underlying graph is a tree. (Note that several input gates may
be labeled with the same variable.)

The size of a circuit or formula is the number of nodes. A description of
a circuit or formula is a binary encoding of it. The length of the description
is the length of it as a binary string.

With each node in the circuit, we can associate a polynomial that is
computed at this node. For an node with indegree zero, it is the polynomial
that the node is labeled with. For a node v with degree two, we define this
polynomial inductively: If p and q are the polynomials of the predecessors
of v, then we associate the polynomial p + q or p · q with this node. The
polynomial at the output gate is the polynomial computed by the circuit.

Definition 15.1 1. Arithmetic circuit identity testing problem (ACIT):
Given an (encoding of an) arithmetic circuit computing a polynomial
p in X1, . . . , Xn, decide whether p is identically zero.

2. Arithmetic formula identity testing problem (AFIT): Given an (encod-
ing of a) arithmetic formula computing a polynomial p, decide whether
p is identically zero.
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15.2 Testing for zero

How do we check whether a polynomial p given by a circuit or formula is
identically zero? We can of course compute the coefficients of p from the
circuit. The output may be exponential in the size of the circuit, so this is not
efficient. A better way to solve this problem is provided by randomization.
We simply assign random values to the variables and evaluate the circuit. If
p is nonzero, then it is very unlikely that p will evaluate to zero at a random
point. This intuition is formalized in the following lemma.

Lemma 15.2 (Schwartz–Zippel) Let p(X1, . . . , Xn) be a nonzero poly-
nomial of degree d over a ring F . Let S ⊆ F be finite. Then

Pr
r1,...,rn∈S

[p(r1, . . . , rn) = 0] ≤ d/|S|.

Proof. The proof is by induction in n. The case n = 1 is easy: A
univariate polynomial p 6= 0 of degree d has at most d roots. The probability
of picking such a root from S is at most d/|S|. For the induction step
n→ n+ 1, we write p as an element of F [X1, . . . , Xn][Xn+1]. Let d′ be the
degree of Xn+1 in p. We have

p(X1, . . . , Xn+1) =

d′∑
δ=0

pδ(X1, . . . , Xn)Xδ
n+1 with pδ ∈ F [X1, . . . , Xn].

Obviously, d′ ≤ d and deg pd′ ≤ d− d′. By the induction hypothesis applied
to pd′ ,

Pr
r1,...,rn+1∈S

[p(r1, . . . , rn+1) = 0]

≤ Pr
r1,...,rn∈S

[pd′(r1, . . . , rn) = 0]

+ Pr
r1,...,rn+1∈S

[p(r1, . . . , rn+1) = 0 | pd′(r1, . . . , rn) 6= 0]

≤ deg pd′/|S|+ d′/|S|
≤ d/|S|.

Now assume we are given a description of an arithmetic formula for a
polynomial p of size s. Let ` ≥ s be the length of the description.

Lemma 15.3 The degree of a polynomial p computed by an arithmetic for-
mula of size s is at most s.

Proof. The claim is shown by induction on s:
Induction base: If s = 1, then the degree is either zero or one.
Induction step: If s > 1, then we decompose the given formula into two
formulas by removing the output gate. Let the resulting subformulae have
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sizes s1 and s2 and compute polynomials p1 and p2. We have s1 +s2 +1 = s.
By the induction hypothesis, deg p1 ≤ s1 and deg p2 ≤ s2. We have p = p1·p2

or p = p1 + p2. In both cases, deg p ≤ deg p1 + deg p2 ≤ s.

Now we choose the set S = {1, 2, . . . , 2s}, from which we randomly pick
the values and assign them to the variables. If p is zero, then p will evaluate
to zero no matter what. If p is nonzero, then the Schwartz–Zippel lemma
assures that our error probability is less than s/(2s) = 1/2.

What remains to be addressed is how to evaluate the formula after as-
signing values to the variables. If the largest absolute value of the con-
stants in the formula is c, then the absolute value of the output is at most
(max{c, 2s})s.

Exercise 15.1 Prove the last claim.

Its bit representation has at most s · log max{c, 2s} many bits. Since
log c ≤ ` (the bit representation of c is somewhere in the encoding), this is
polynomial in the length of the input. This show the following results.

Theorem 15.4 AFIT ∈ co-RP.

The case where p is given by an arithmetic circuit is somewhat trickier.
Here the degree of the computed polynomial might be almost as large 2s

but never more.

Exercise 15.2 1. Prove the following: Any arithmetic circuit of size s
computes polynomials of degree at most 2s−1.

2. Construct an arithmetic circuit of size s that computes a polynomial
of degree 2s−1

3. Consider a circuit of size s and let c be an upper bound for the absolute
values of the constants in C. Assume we evaluate the circuit at a
point (a1, . . . , an) with |aν | ≤ d, 1 ≤ ν ≤ n. Then |C(a1, . . . , an)| ≤
max{c, d}2s.

Theorem 15.5 ACIT ∈ co-RP.

Proof. The following Turing machine is a probabilistic Turing machine
for ACIT.

Input: a description of length ` of a circuit C of size s.

1. Choose random values a1, . . . , an ∈ {1, . . . , 8 · 2s}.

2. Let m = 2s ·max{log c, s+ 3}.

3. Choose a random prime number q ≤ m2 (Lemma 15.6.
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4. Evaluate the circuit at a1, . . . , an modulo q

5. Accept if the result is 0, otherwise reject.

Assume that in step 3, q is a prime number with probability ≥ 7/8. q
has O(s ·max{log log c, log s}) many bits. By Exercise 15.2, this is bounded
by O(s log `). Thus we can evaluate the circuit modulo q in polynomial time,
since we can perform the operation at every gate modulo q.

If C is zero, then the Turing machine will always accept C. (If we do
not find a prime q in step 3, we will simply accept.)

Now assume that C is nonzero. By the Schwartz-Zippel lemma, the
probability that C evaluates to zero is ≤ 2s/(8 · 2s) = 1/8. The probability
that we do not find a prime in step 3 is 1/8, too. We have |C(a1, . . . , an)| ≤
max{c, 2s+3}2s . Thus there are at most 2s ·max{log c, s+ 3} = m different
primes that divide C(a1, . . . , an). The prime number theorem tells us that
there are at least m2/(2 logm) many primes smaller than m2. The proba-
bility that we hit a prime that divides C(a1, . . . , an) is (2 logm)/m ≤ 1/8
for s large enough. Thus the probability that the Turing machines accepts
C is ≤ 3/8.

Lemma 15.6 There is a probabilistic algorithm that given M = 2µ, returns
with probability ≥ 3/4 a random prime and “failure” otherwise.

Proof. Consider the following Turing machine:

Input: M = 2µ

1. Do c · µ times:

2. Choose a random number r with µ bits

3. Check deterministically whether r is prime

4. If r is prime, return r

5. return “failure”

By the prime number theorem, r is prime with probability ≥ 1/µ. Thus,
the probability that we do not find a prime is (1 − 1

µ)cµ ≤ e−c. Choosing
c = ln 4 proves the lemma.



16 The isolation lemma

Deciding whether a bipartite graph has a perfect matching is one of the
problems in P for which we do not know whether it is in NC. In this chap-
ter we show that this problem can be decided by randomized circuits of
polynomial size and polylogarithmic depth.

16.1 Probabilistic circuits

In the same way we added randomness to Turing machines, a sequential
model of computation, we can also add randomness to circuits. A circuit
now gets two inputs x and y where |y| = p(|x|) for some polynomial p. We
think of y as a random string.

Definition 16.1 1. A language L is in the class RNCi if there exists a
logarithmic space uniform family of circuits C (with two inputs) of
polynomial size and depths O(logi n) such that

x ∈ L =⇒ Pr
y

[C(x, y) = 1] ≥ 1/2,

x /∈ L =⇒ Pr
y

[C(x, y) = 1] = 0.

2. RNC =
⋃
i∈N RNCi.

One could also define BPNC and ZPNC but these classes are rarely
needed.

16.2 Matchings, permanents, and determinants

Let G = (U ∪ V,E) be a bipartite graph with bipartition U = {u1, . . . , un},
V = {v1, . . . , vn} and edges E ⊆ U × V . A perfect matching M in G is a
subset of E such that each u ∈ U appears in exactly one e ∈ M and each
v ∈ V appears in exactly one e ∈ M . Computing one perfect matching
(or deciding whether one exists) can be done in polynomial time. It is an
open problem whether there is an efficient parallel deterministic algorithm
for this problem, i.e., it is unknown whether this problem is in NC. In this
chapter we will show that it is in RNC.
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Let AG = (ai,j) be the n × n-matrix that has a 1 in position (i, j) if
(ui, vj) ∈ E and a 0 otherwise. The determinant of AG is

detAG =
∑
σ∈Sn

sign(σ)

n∏
i=1

ai,σ(i).

Sn is the symmetric group, i.e., the group of all permutations of {1, . . . , n}.
Any perfect matching defines a bijection from {u1, . . . , un} to {v1, . . . , vn}.
We can interpret this as a permutation on {1, . . . , n}.

∏n
i=1 ai,σ(i) equals 1,

if (ui, vσ(i)) ∈ E for all 1 ≤ i ≤ n, i.e., the matching that corresponds to σ
is in fact present in G. Thus the determinant counts all perfect matchings
but either with 1 or −1 depending on the sign of the permutation. The
problem is that the determinant can be zero even if the graph contains a
perfect matching, since the matchings with 1 and −1 can cancel out.

If we really want to count all perfect matchings in G, then the permanent
does it:

permAG =
∑
σ∈Sn

n∏
i=1

ai,σ(i).

The permanent of AG is precisely the number of perfect matchings in G.
While the determinant can be computed efficiently, even in parallel, evalu-
ating the permanent seems to be hard. (We will formalize this in one of the
next chapters). Thus the omission of sign(σ) makes the problem harder not
easier!

We can still use the determinant to check whether a graph has a perfect
matching or not. Instead of writing a 1 if there is an edge from ui to vi,
we write an indeterminate xi,j instead. In this way, every perfect matching
in G give rise to a unique monomial of the determinant (as a polynomial in
the indeterminates) and hence they cannot cancel out.

Lemma 16.2 Let G be a bipartite graph as above and let XG be the matrix
that has an indeterminate xi,j in position (i, j) if (ui, vj) is an edge of G
and 0 otherwise. Then G has a perfect matching iff detXG 6= 0.

Exercise 16.1 The characteristic polynomial of a matrix A is defined as
cA(X) = det(A−X ·I) where I is the identity matrix. Let cA(X) = sA,0X

n+
sA,1X

n−1 + · · ·+ sA,n.

1. Show that

sA,0 = (−1)n

sA,k =
1

k

k∑
κ=1

(−1)κ−1sk−κ trace(Aκ), 1 ≤ k ≤ n.

2. Show that sA,n = detA.
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3. Show that there is a logarithmic space uniform family of Boolean cir-
cuits of polynomial size and polylogarithmic depth that computes the
determinant of a matrix A. (Assume that A has dimension n× n and
entries with p(n) bits for some polynomial p.)

While we can efficiently compute the determinant in parallel if the en-
tries of the matrix are numbers, we cannot compute the determinant of a
matrix with indeterminates, even not in polynomial time, since the number
of monomial might be too large. But the Schwartz-Zippel lemma gives an
efficient way to test whether a polynomial is zero or not, just plug in random
values from a large enough (but not too large) set.

Now Lemma 16.2 and Exercise 16.1 together with the Schwartz-Zippel
Lemma gives an efficient randomized parallel algorithm for deciding whether
a given bipartite graph has a perfect matching.

Theorem 16.3 Deciding whether a given bipartite graph contains a perfect
matching is in RNC.1

16.3 The isolation lemma

We will design an algorithm that will find a perfect matching in a bipartite
graph with exactly one perfect matching and will even find a perfect match-
ing of minimum weight in a weighted graph provided that the minimum
weight perfect matching is unique. The result in this chapter shows that if
we assign random weights to the edges of an unweighted graph, then with
high probability, there is a unique minimum weight perfect matching.

Let S be a set and assume that each element s ∈ S has a weight ws ∈ N.
For T ⊆ S, the weight of T is

∑
t∈T wt.

Lemma 16.4 Let S be a set of size n and let F be a nonempty set of subsets
of S. If we assign to each s ∈ S a weight ws ∈ {1, . . . , 2n} independently
and uniformly at random, then

Pr[there is a unique minimum weight set in F ] ≥ 1/2.

The amazing part of this lemma is that it is completely oblivious: It
does not care about how F actually looks like, the same random process
does the job for every F !

Proof. We call an s ∈ S bad if it is contained in a minimum weight set
but not in all of them. It is obvious that there is a bad element s iff the
minimum weight set is not unique.

1We showed that ACIT ∈ co-RP, so one might expect that the problem is in co-RNC.
But note that elements in ACIT are circuits that compute the zero polynomial whereas
determinant = 0 means that the graph has not a perfect matching.
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Suppose that all weights have been assigned except the one for s. Let
Ws := min{w(T ) | T ∈ F, s /∈ T} and Vs := min{w(T \{s}) | T ∈ F, s ∈ T}.

We claim that s can only be bad if we assign to s the weight Ws−Vs. If
ws < Ws − Vs, then the sets that do not contain s are not minimum weight
sets, hence s cannot be bad. If ws > Ws − Vs, then the sets that contain s
cannot be minimum weight sets, again s cannot be bad.

Since s is chosen from a set of size 2n, the probability that s is bad is
≤ 1/(2n). There are n elements, thus, the probability that none of them is
bad is ≥ 1− 1/(2n) · n = 1/2.

In our algorithm, F will be the set of all matchings of a graph. Af-
ter assigning weights from {1, . . . , 2|E|} to the edges, we know that with
probability ≥ 1/2, there is a unique minimum weight perfect matching.

16.4 Constructing perfect matchings

We already saw how to compute a satisfying assignment given a procedure
that decides SAT. But self-reducibility seems to be inherently sequential.
For perfect matching, there is a way of doing self reducibility in parallel:

Input: an incidence matrix A of a bipartite graph G = (V,E)

1. Choose random values we ∈ {1, . . . , 2|E|} for each e ∈ E and give each
edge the weight 2we . Let B be the resulting matrix.

2. Compute detB. If detB = 0 return “no matching”.

3. Compute the largest R such that 2R divides detB.

4. Do the following in parallel:

(a) For each edge e, let Be the matrix that is obtained from B by
setting the entry of e to 0.

(b) Compute detBe. If detBe = 0, then output e.

(c) Otherwise, compute the largest Re such that 2Re divides detBe.

(d) If R < Re, then output e.

Every matching corresponds to a monomial sign(π)x1,π(1) · · ·xn,π(n). As-
sume that π corresponds to an actual matching M in G. If we replace xe by
2we , then the term above becomes sign(π)2w(M). By the isolation lemma,
with probability 1/2, the minimum weight perfect matching is unique. Let
W be the weight of the minimum weight perfect matching. Then 2W | detB.
All other matchings contribute terms ±2W

′
with W ′ > W . Thus all other

terms are divided by 2W+1. Hence, detB = 2W (1+2b) for some odd number
(1 + 2b), which is potentially negative, and the number R computed by the
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circuit is indeed the weight of a minimum weight perfect matching. Note
that all the weights have a polynomial number of bits.

So far everything could be done in logarithmic depth, we just needed to
compute a determinant. Finding R is a little tricky. If we assume that all
number are stored in signed representation (and not in 2-complement), then
we just have to find the first 1 in the binary expansion of detB. It is an
easy exercise to do this in logarithmic depth.

Next we remove each edge e in parallel and again compute the weight
of a minimum weight perfect matching: If e is not in the unique minimum
weight perfect matching, then Re = R. If e is in the minimum matching,
then this term is canceled and detBe = 2R(2b′) and hence, Re > R. Thus
for every edge, we correctly compute whether it is in the unique minimum
weight perfect matching or not. The only technicality is how to output the
matching. We have m subcircuits, n of which computed an edge and the
other ones reported a failure. We have to find out which circuits actually
found edges and move their result to the right output gates. But this is
again a not too hard exercise.

Theorem 16.5 There is a logarithmic space uniform family of probabilistic
circuits of polynomial size and polylogarithmic depth that given an incidence
matrix of a bipartite graph computes with probability 1/2 a perfect matching
of G, if one exists, and reports failure otherwise.
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Suppose we have a polynomial time bounded deterministic Turing machine
A for SAT that always finds a satisfying assignment for a formula φ provided
that φ has exactly one satisfying assignment. (And we do not care what
A does on other formulas.) We will show that this is already sufficient to
efficiently solve all problems in NP, namely, NP = RP follows.

Proof overview: The key idea is to design a randomized reduction that
maps φ to formulas ψ0, . . . , ψn with the following properties: If φ is not sat-
isfiable, then none of the ψν is. If φ is satisfiable, then with high probability
at least one ψν has exactly one satisfying assignment. We run A on the
formulas and check whether the computed assignments satisfy the formula
or not. Each ψν has the form φ∧f(x) where f is an additional formula that
is satisfied by one out of ≈ 2ν assignments. Hence if φ has about 2ν assign-
ments, then ψν will have exactly one assignment (with high probability).

17.1 Pairwise independent hash functions

Definition 17.1 1. A family H of functions {0, 1}n → {0, 1}m is a fam-
ily of universal hash functions if for every two different x, y ∈ {0, 1}n,

Pr
h∈H

[h(x) = h(y)] =
1

2m
.

2. H is a family of pairwise independent hash functions if for every two
different x, y ∈ {0, 1}n and every u, v ∈ {0, 1}m,

Pr
h∈H

[h(x) = u ∧ h(y) = v] =
1

22m
.

If H is a family of pairwise independent hash functions, them by sum-
ming over all v, we get that Prh∈H [h(x) = u] = 1

2m . An easy calculation
now shows that Prh∈H [h(x) = u|h(y) = v] = Prh∈H [h(x) = u].

The idea of the above reduction is as follows. Assume that φ has about
2m satisfying assignments. Then the probability that an assignment a sat-
isfies φ and h(a) = (0, . . . , 0) for some randomly chosen h from a family of
pairwise independent hash functions would roughly be 2−m. This means,
we expect about one such assignment.

87
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We define a family A of functions {0, 1}n → {0, 1}m as follows: For
m vectors a1, . . . , am ∈ {0, 1}n and m number b1, . . . , bm ∈ {0, 1}, define
ha1,...,am,b1,...,bm by x 7→ (a1x+b1, . . . , amx+bm). Here aix denotes the scalar
product of ai and x and all computations are modulo 2, i.e., we compute
over GF(2). In particular, we view {0, 1}n as a vector space over the field
GF(2).

Theorem 17.2 A is a family of pairwise independent hash functions.

Proof. Let x, y ∈ {0, 1}n, x 6= y and u, v ∈ {0, 1}m. Consider the event

a1x+ b1 = u1 ∧ a1y + b1 = v1.

(Here ui and vi are the entries of the vectors u and v.) The event above is
the same as

a1(x+ y) = u1 + v1 ∧ b1 = v1 − a1y.

(We added the equation on the righthand side to the one on the lefthand
side. This is an invertible linear transformation.) Its probability is

Pr
h

[b1 = v1 − a1y|a1(x+ y) = u1 + v1] Pr
h

[a1(x+ y) = u1 + v1].

The conditional probability is 1/2, since the righthand side of the first equa-
tion determines b1. Since everything else is independent of b1, b1 fulfills
this equation with probability 1/2. The other probability is also 1/2: Since
x 6= y, there is one component where x and y differ, say x1 6= y1. Then
a1(x+ y) = u1 + v1 determines a1,1 via

a1,1a1,1(x1 + y1) = u1 + v1 −
n∑
i=2

a1,i(xi + yi).

Thus

Pr
h

[a1(x+ y) = u1 + v1 ∧ b1 = v1 − a1y] =
1

4
.

Since the events

aix+ bi = ui ∧ aiy + bi = vi

are all independent,

Pr
h

[h(x) = u ∧ h(y) = v] =
1

4m
.
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17.2 Making solutions unique

We use hash functions to make a satisfying assignment unique.

Lemma 17.3 Let S ⊆ {0, 1}n with 2k ≤ |S| < 2k+1 and let H be a family
of pairwise independent hash functions {0, 1}n → {0, 1}k+2. Then

Pr
h∈H

[|{x ∈ S | h(x) = (0, . . . , 0)}| = 1] ≥ 1

8
.

Proof. Fix some s ∈ S. The probability that s is the only element in S
that is mapped to z := (0, . . . , 0) is

Pr
h

[h(s) = z ∧ ∀t ∈ S \ {s} : h(t) 6= z]

= Pr
h

[h(s) = z] Pr
h

[∀t ∈ S \ {s} : h(t) 6= z|h(s) = z].

We have

Pr
h

[h(s) = z] =
1

2k+2

and

Pr
h

[∀t ∈ S\{s} : h(t) 6= z|h(s) = z] = 1−Pr
h

[∃t ∈ S\{s} : h(t) = z|h(s) = z].

Now,

Pr
h

[∃t ∈ S \ {s} : h(t) = z|h(s) = z] ≤
∑

t∈S\{s}

Pr
h

[h(t) = z|h(s) = z]

≤
∑

t∈S\{s}

Pr
h

[h(t) = z]

=
|S| − 1

2k+2

≤ 1

2
.

Here the second line follows from the pairwise independency of the family
H. Putting everything together, we get that

Pr
h

[h(s) = z ∧ ∀t ∈ S \ {s} : h(t) 6= 0] ≥ 1

2k+3
.

The probability that there is a unique element that is mapped to z is∑
s∈S

Pr
h

[h(s) = z ∧ ∀t ∈ S \ {s} : h(t) 6= 0] ≥ |S|
2k+3

≥ 1

8
.
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Lemma 17.4 There is a polynomial time bounded probabilistic Turing ma-
chine that given a formula φ and an integer k outputs a formula ψ such
that

1. if φ is not satisfiable, so is ψ, and

2. if φ is satisfiable and the number of satisfying assignments of φ is in
[2k, 2k+1), then ψ has a unique satisfying assignment with probability
at least 1/8.

Proof. Let x1, . . . , xn be the variables of φ and x = (x1, . . . , xn). The
Turing machine M picks a1, . . . , ak+2 ∈ {0, 1}n and b1, . . . , bk+2 ∈ {0, 1}
uniformly at random. The formula ψ is equivalent to φ(x)∧ (a1x+b1 = 0)∧
· · ·∧(ak+2x+bk+2 = 0). The term a1x+b1 = 0 might have an exponentially
large CNF. We circumvent this problem by viewing the expression as a
circuit and let ψ be the formula obtained as in the reduction from CSAT to
SAT. (Exercise: Check that this reduction preserves the number of satisfying
assignments.)

By construction, the number of satisfying assignments of ψ is the number
of these assignments that satisfy φ and are mapped to (0, . . . , 0) by the
hash function. Thus, if φ is not satisfiable, so is ψ. If the number of
satisfying assignments is in [2k, 2k+1), then by Lemma 17.3, ψ has exactly
one satisfying assignment with probability ≥ 1/8.

Theorem 17.5 (Valiant–Vazirani) If there is a polynomial time Turing
machine M that given a formula having exactly one satisfying assignment
finds this assignment, then NP = RP. (We do not make any assumption
about the behavior on M on other formulas.)

Proof. It is sufficient to show that SAT ∈ RP. We claim that the following
probabilistic Turing machine decides SAT:

Input: a formula φ in CNF

1. Construct formulas ψ0, . . . , ψn as in Lemma 17.4 for all values k =
0, . . . , n.

2. Simulate M on ψ0, . . . , ψn

3. Check whether M produces a satisfying assignment for at least one
ψi.

4. If no, then reject φ. If yes, accept φ.

If φ is not satisfiable, then none of ψ0, . . . , ψn is. Thus we will always
reject φ. If φ is satisfiable, then it has between 2k and 2k+1 satisfying
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assignments for some k. With probability ≥ 1/8, ψk will have a unique
satisfying assignment. (We need the satisfying assignment produced by M
to check whether φ is indeed satisfied, since we do not know the value of
k.) In this case, M will accept. Thus we accept φ with probability ≥ 1/8.
Using probability amplification, we can amplify this probability to 1/2.

17.3 Further exercises

Exercise 17.1 Show that NP = RP if there is a polynomial time bounded
deterministic Turing machine that given a formula φ that has either zero or
one satisfying assignments accepts this formula iff it is satisfiable. (Again
we do not care what the machine does on other inputs.)



18 Counting problems

18.1 #P

Definition 18.1 1. Let R be an NP relation. Then #R : Σ∗ → N is the
function defined by

#R(x) = |{y | R(x, y) = 1}|.

2. #P = {#R | R is an NP-relation }. (#P is usually pronounced as
“sharp P” or “number P”.)

Unlike previous classes, #P is not a class of languages but of functions.
When we decide L(R), we want to check for a given input x whether there
is a y such that R(x, y). When we compute #R(x), we count the number
of y such that R(x, y) = 1.

Exercise 18.1 Show the following: f ∈ #P iff there is a polynomial time
nondeterministic Turing machine M such that for all x, f(x) is the number
of accepting paths of M .

Exercise 18.2 Show that if f, g ∈ #P, so are f+g, f ·g, and x 7→ f(x)p(|x|)

for every polynomial p.

Of course, we want to talk about #P-completeness. One has to be a
little careful about the kind of reduction.

Definition 18.2 Let f, g : Σ∗ → N. Let s : Σ∗ → Σ∗ and t : N → N be
polynomial time computable; for computing t, we use the binary encoding.

1. (s, t) is a polynomial time many one reduction from f to g, if f(x) =
t(g(s(x))) for all x ∈ Σ∗. f is polynomial time many one reducible to
g, denoted by f ≤P g, if a polynomial time many one reduction from
f to g exists.

2. s is a parsimonious reduction from f to g if f(x) = g(s(x)) for all
x ∈ Σ∗. In this case, we write f ≤par g.

3. f is called polynomial time Turing reducible to g, denoted by f ≤T
P

g, if there is a polynomial time oracle Turing machine M such that
f(x) = Mg(x) for all x ∈ Σ∗.
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Here a many one reduction consists of two functions. s maps instances
of f to instances of g. t recovers the answer of f from the answer of g. A
parsimonious reduction is a many one reduction where t is the identity. Let
f = #R and g = #S for two NP relations R and S. If f ≤par g, then

f(x) = |{y | R(x, y) = 1}| = g(s(x)) = |{z | S(s(x), z) = 1}|,

i.e., x and s(x) have the same number of solutions. We have f ≤par g =⇒
f ≤P g =⇒ f ≤T

P g.

Lemma 18.3 ≤par, ≤P, and ≤T
P are transitive.

Proof. Let f ≤P g and g ≤P h with reductions (s, t) and (u, v). Then
(u ◦ s, t ◦ v) is a polynomial time many one reduction from f to h:

t(v(h(u(s(x))))) = t(g(s(x))) = f(x)

for all x.

If v and t are the identity, so is v◦t. Thus the same holds for parsimonious
reductions.

For ≤T
P, the proof works the same as for decision problems.

Theorem 18.4 #CSAT is #P-complete under parsimonious reductions.

Proof. Let R be an NP-reduction. R is computable in polynomial
time. When we showed that CSAT is NP-complete, we constructed a polyno-
mial time computable mapping that maps each x to a circuit Cx such that
Cx(y) = 1 iff R(x, y) = 1. This is obviously a parsimonious reduction from
#R to #CSAT.

Exercise 18.3 Show that #3SAT is #P-complete under parsimonious re-
ductions.

Reductions for counting problems

x
s−→ s(x)

↓ ↓
f(x)

t←− g(s(x))
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Figure 18.1: The variable gadget

18.2 The permanent

Let R,S be NP-relations. If #R is #P-hard under parsimonious reductions,
then L(R) is NP-hard under many-one reductions. If s is a parsimonious
reduction from #S to #R, then |{y | S(x, y) = 1}| = |{z | R(s(x), z) = 1}|.
In particular, x ∈ L(S) iff s(x) ∈ L(R).

But if we look at many one reductions (or even Turing reductions), then
there are problems that are #P -complete and the corresponding search prob-
lem is in P. An example is the problem of counting the perfect matchings in
a bipartite graph. Let G = (U ∪ V,E) be a bipartite graph with bipartition
U = {u1, . . . , un}, V = {v1, . . . , vn} and edges E ⊆ U × V . Computing one
perfect matching (or deciding whether one exists) can be done in polynomial
time. But counting all perfect matchings, that is, computing the permanent
of the adjacency matrix AG, is #P -hard, as will we see in the following.

For the proof of the #P-hardness of the permanent it is more convenient
to think in terms of cycle covers. For a given G, we define a directed graph
G′ = (V,A), possibly having loops. There is a directed edge (vi, vj) ∈ A iff
(ui, vj) ∈ E. A cycle cover in G′ is a collection of node disjoint cycles such
that each node is contained in exactly one cycle. (Loops count as cycles.)
It is easy to see that cycle covers of G′ stand in one-to-one correspondence
with perfect matchings of G. Thus instead of counting perfect matchings of
G we can count cycle covers of G′ instead.

Theorem 18.5 (Valiant) perm is #P-complete under many-one reduc-
tions and even for {0, 1} matrices.

Proof. We reduce #3SAT to perm. We are given a formula φ in CNF
with three literals per clause. Our task is to construct a directed graph
G such that we can compute the number of satisfying assignments of φ in
polynomial time, given the number of cycle covers in G.

For each variable x, we have a variable gadget as depicted in Figure 18.1.
The two nodes are not connected to any other parts of the graph. The upper
and the lower edge are replaced by paths later on. In a cycle cover, the two
nodes are either covered by a cycle using the middle and the upper edge or
the middle and the lower edge. The first possibility corresponds to setting
x to 1, the second to setting x to 0.

For each clause c, we have a clause gadget as shown in Figure 18.2. Each
of the three outer edges corresponds to the occurrence of the literal in the



18.2. The permanent 95

Figure 18.2: The clause gadget. Undirected edges (drawn thick) represent
a pair of directed edges with opposite directions.

clause. It will be replaced by some path in the final construction. Each of
the outer edges will be “connected” to the edge of the upper or lower edge
of the variable gadget, depending on whether the variable appears positively
or negatively in the clause. 1

Exercise 18.4 Show the following:

1. No cycle cover of the clause gadget contains all three outer edges.

2. For any proper subset of the outer edges, there is exactly one cycle
cover that contains exactly the outer edges of the set.

Next, we design a so-called XOR-gadget. We now allow the edges to
have weights, i.e., the entries ai,j of AG now may be elements from Z. We
then show how to remove these weights. The graph and the corresponding
matrix X of the XOR-gadget are shown in Figure 18.3.

Exercise 18.5 Calculate the following:

1. The permanent of X is 0.

2. If we delete the first row and column of X or the last row and column
of X or the first and the last rows and columns of X, then the resulting
matrix has permanent 0.

3. If we delete the first row and the last column of X or the last row and
first column of X, then the permanent is 4.

Now assume we have two edges (u, v) and (y, x). (One of them will be
an outer edge of the clause gadget, the other one the corresponding edge of
the corresponding variable gadget.) We now connect u to 1 and 4 to v and
y to 4 and 1 to x, see Figure 18.4

1The gadgets we saw in the lecture different from the ones given here. See “Exponential
Time Complexity of the Permanent and the Tutte Polynomial” by Holger Dell, Thore
Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén.
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4

3

2

3

−1

−1
2

1 −1
X =


0 1 −1 −1
1 −1 1 1
0 1 1 2
0 1 3 0



Figure 18.3: The XOR-gadget. Undirected edges (drawn thick) represent
two edges with opposite directions. An edge without a weight attached to
it has weight 1. The righthand side show the adjacency matrix X.
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Figure 18.4: Connecting two edges with an XOR-gadget
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Now assume that we have a cycle cover that uses the edges (u, 1) and
(4, v). This corresponds to deleting the last row and first column of X.
Then the XOR-gadget will contribute 4 to the number of cycle covers. The
same if we have a cycle cover that uses the edges (x, 4) and (1, y). If we
use the four edges or the pair (u, 1) and (1, y) or (4, v) and (x, 4), then the
contribution is zero. This explains the name XOR-gadget. To contribute
weight, we can either choose the (u, v) path or the (y, x) path.

Now we choose (y, x) to be the outer edge of a clause gadget and (u, v)
the corresponding edge of variable gadget. One edge of a variable gadget
will be connected to various clause gadgets; we connect the XOR-gadgets
in series. This is done in the following way: For each clause, we have two
new vertices on the path (that corresponds to a lower or upper edge of the
variable gadget). The two vertices of the variable gadget are not part of any
XOR-gadget. In the same way, we replace the outer edge by a path consisting
of three edges, and we connect the middle edge to the XOR-gadget.

Now take an assignment of φ and choose the corresponding cycles in
the variable gadget. If every clause is satisfied, then for at least one outer
edge of the clause set, the variable path of the XOR-gadget is chosen and
then there is one cycle cover within the clause gadget. If the clause is not
satisfied, then the three XOR-gadgets have to be covered using the outer
edges, but then there is no cycle cover inside the clause gadget. Thus a non-
satisfying assignment produces no cycle cover; a satisfying one produces at
least one cycle cover. But we can calculate the number of covers precisely:
Each variable and clause gadget contributes weight 1, each XOR-gadget
contributes weight 4. This gives a total number of 4m cycle covers, where
m is the number of literals in all clauses.

The above construction describes how to map instances of #3SAT to
instances of perm, and we can map the solution back just by dividing by
4m. What remains is to remove the edge weights.

Exercise 18.6 1. Show that constant positive edge weights can be re-
moved by introducing parallel edges. This gives a multigraph. We get
rid of the parallel edges by inserting a node with a loop attached.

2. Show that we can simulate edge weight 2k by inserting a path of parallel
edges and a similar reduction as in 1.

Thus it remains to simulate the weights −1. To this aim, we replace
the edge weight −1 by 2k where k = 4m. Let P be the permanent of the
new graph. Let 0 ≤ r < 2k + 1 the remainder when dividing P by 2k + 1.
We claim that r is the number of cycle covers in the original graph. Notice
that modulo 2k + 1, 2k equals −1. The number of cycle covers is at most
2n · 4m ≤ 23m < 2k + 1. Thus r is the right number.



19 Toda’s theorem

How much more powerful is counting the number of witnesses compared to
deciding whether there exists a witness? Astonishingly, counting is much
more powerful than deciding: We will show that P#P contains the whole
polynomial time hierachy!1

Proof overview: First we introduce the class ⊕P, a class that corresponds
to a very simply way of counting, namely counting modulo two. It turns out
that already this class is very powerful: From the Valiant–Vazirani Theorem,
it essentially follows that NP ⊆ BP-⊕P. We can even stronger show that
∃⊕P ⊆ BP-⊕P. Once we have this, an easy induction shows that PH ⊆
BP-⊕P. Finally, we show that BP-⊕P ⊆ P#P.

19.1 ⊕P
Definition 19.1 The class ⊕P (read “parity P” or “odd P”) is the class of
all languages L such that there is an NP-relation R and for all x we have

x ∈ L ⇐⇒ #R(x) is odd.

Compared to NP, we do want to know whether there is an odd number
of accepting paths and not just one. Compared to #P, we have a very
rudimentary form of counting, namely of counting modulo two.

Lemma 19.2 1. P ⊆ ⊕P.

2. ⊕P = co-⊕P.

Proof.

1. 0 is even, 1 is odd.

2. Consider the following NP-relation:

S(x, y) =


1 if y = 0

R(x, y′) if y = 1y′

0 otherwise

We have #S(x) = #R(x) + 1.

1We cannot directly compare NP with #P, since they contain different objects, namely
sets and functions.
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⊕P has complete problems under polynomial time many-one reductions.
For instance ⊕3SAT is, where a formula φ in 3-CNF is in ⊕ 3SAT iff it has
an odd number of satisfying assignments. This follows from the fact that
#3SAT is #P-complete under parsimonious reductions.

Exercise 19.1 Let R be an NP relation. Let ⊕R be the language {x |
the number of y with R(x, y) = 1 is odd}. Prove that if #R is #P-hard un-
der parsimonious reductions, then L(R) is NP-hard under many-one reduc-
tions and ⊕R is ⊕P-hard under many-one reductions.

Exercise 19.2 Show that we can deterministically decide in polynomial
time whether the permanent of an integer matrix is odd.

From the proof of the Valiant-Vazirani theorem, we get the following
result with only little extra work.

Theorem 19.3 NP ⊆ BP-⊕P.

Before we can prove it, we first show three useful results about ⊕3SAT.

Lemma 19.4 There are deterministically polynomial time computable func-
tions f, g, h such that for all formulas φ1, . . . , φm,

1. φ1 ∈ ⊕3SAT ∧ · · · ∧ φm ∈ ⊕3SAT ⇐⇒ f(φ1, . . . , φm) ∈ ⊕3SAT,

2. φ1 ∈ ⊕3SAT ⇐⇒ g(φ1) /∈ ⊕3SAT,

3. φ1 ∈ ⊕3SAT ∨ · · · ∨ φm ∈ ⊕3SAT ⇐⇒ h(φ1, . . . , φm) ∈ ⊕3SAT.

Proof.

1. Let ti be the number of satisfying assignments of φi. ψ = φ1 ∧ · · · ∧
φm has exactly t1 · · · tn satisfying assignments (we use disjoint sets of
variables). This is odd iff each ti is odd.

2. Let x1, . . . , xn be the variables of φ1. Then (φ1∨y)∧ ((x1∨¬y)∧ · · ·∧
(xn ∨ ¬y)) has one satisfying assignment more than φ1. (Check this!)
This formula is not in 3-CNF, though, but there is a parsimonious
reduction from #SAT to #3SAT.

3. Follows from 1. and 2. and de Morgan’s law.

Proof of Theorem 19.3. Given a formula φ in 3-CNF, there is a proba-
bilistic polynomial time algorithm that computes formulas ψ0, . . . , ψn such
that:

• If φ is satisfiable, then there is an i such that ψi has a unique satisfying
assignment with probability ≥ 1/8.
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• If φ is not satisfiable, then no ψi is satisfiable.

Now take the function h from Lemma 19.4: If the formula φ is satisfiable,
then h(ψ0, . . . , ψn) ∈ ⊕3SAT with probability 1/8. If φ is not satisfiable,
then h(ψ0, . . . , ψn) /∈ ⊕3SAT. Since 3SAT is NP-complete and ⊕3SAT ∈ ⊕P,
this completes the proof.

Next, we strengthen Theorem 19.3.

Theorem 19.5 ∃⊕P ⊆ BP-⊕P.

Proof. The following problem is ∃⊕P complete. Given a formula in 3-
CNF in variables y1, . . . , yn and z1, . . . , zm, is there an assigment to y1, . . . , yn
such that the resulting formula has an odd number of satisfying assignments
to z1, . . . , zm?

Exercise 19.3 Prove this!

We now use essentially the same theorem as in the ValiantVazirani the-
orem, but with one exception: We will require that h(y) = 0, where h is
the hash function (and not the function h of Lemma 19.4), i.e, only the
assignments to the y’s is hashed to zero. Let φ be the given input formula
and let ψ0, . . . , ψn be the resulting formulas.

Assume that φ has an assignment to the y’s such that there is an odd
number of satisfying assignments to the z’s. Then there is an index i such
that with probability 1/8, ψi has exactly one assigments to the y’s such
that there is an odd number of satisfying assignments to the z’s. Then
the total number of satisfying assignments of ψi is odd, since for all other
assignments to the y’s, there is an even number of satisfying assignments to
the z’s. Hence, h(ψ0, . . . , ψn) ∈ ⊕3SAT.

If φ has no assignments to the y’s such that there is an odd number
of satisfying assignments to the z’s, then every φi has an even number of
satisfying assignments, no matter what. Hence, h(ψ0, . . . , ψn) ∈ ⊕3SAT.

Finally, we show that an ⊕P oracle does not add any power to ⊕P. In
particular, this show that BP-⊕P allows probability amplification.

Theorem 19.6 ⊕P⊕P = ⊕P.

Proof overview: Instead of asking the oracle queries directly, we store the
queries and guess the answers. After the computation, we have to verify
the answers. Using the functions f and g of Lemma 19.4, we can verify
all the queries by just one query. We can have one query for free after the
simulation by running a Turing machine for the oracle.
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Proof. We only have to prove the ⊆-direction. Let L ∈ ⊕P⊕P Let M
be a nondeterministic polynomial time Turing machine such that for all x,
M⊕3SAT has an odd number of satisfying assignment iff x ∈ L.

We have to get rid of the oracle. Since M is polynomial time bounded, it
asks at most p(n) queries for some polynomial p. We simulate M as follows:

Input: x

1. Guess the answers to the queries.

2. Simulate M .
Whenever M wants to query the oracle, use the guessed answer instead
and store the query of M on an extra tape.

3. If at some point, M rejects, reject, too.

4. If M accepts, test whether we guessed the right queries:
This can be done via the functions f and g from Lemma 19.4. If the
guessed answer to a query φ was yes, then we have to test whether
φ ∈ ⊕3SAT. If it was no, we test whether g(φ) ∈ ⊕3SAT. All the tests
can be done together via the function f . Let ψ the formula that we
get in this way.

5. Simulate a Turing machine for ⊕3SAT to test whether ψ ∈ ⊕3SAT.
Accept, if this Turing machine accepts, otherwise reject.

The computation tree of the simulation consists of many subtrees, each
one corresponding to one sequence of guessed answers. If the guesses are
wrong, then this subtree always has an even number of accepting path, since
to each accepting path of M , we append a tree that verifies the guessed
answers.

Let x ∈ L. Consider the subtree that corresponds to the right guesses.
It has an odd number a of accepting paths (of M). To each accepting path,
we append a tree where we check our guesses. Since we guessed right, each
of the appended trees has an odd number b of accepting path. The total
number of accepting paths is ab which is odd. In all other subtrees, the
number of accepting path is even. Thus the total number is odd.

If x /∈ L, then a above is even. Thus ab is even, too, and so is the total
number of accepting paths.

Corollary 19.7 BP-⊕P allows probability amplification.

Proof. The amplification procedure in Lemma 14.4 is easily seen to be
in ⊕P⊕P. Thus it is in ⊕P.
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19.2 Toda’s theorem

We start with the following result.

Theorem 19.8 PH ⊆ BP-⊕P.

Proof. We will prove the following claim: For all k, ΣP
k ∪ ΠP

k ⊆ BP-⊕P.
The proof is by induction in k.
Induction base: The case k = 0 is clear.
Induction step: Now assume that the claim is valid for some k. We have
to prove it for k + 1. Since BP-⊕P is closed under complementation (check
this!) is is sufficient to proof that ΣP

k+1 ∈ BP-⊕P. Let L ∈ ΣP
k+1 = ∃ΠP

k . By
the induction L ∈ ∃BP-⊕P. Since BP-⊕P allows probability amplification,
L ∈ BP-∃⊕P by Lemma 14.5. By Theorem 19.5, L ∈ BP-BP-⊕P. Thus
L ∈ BP-⊕P by Exercise 14.3.

Exercise 19.4 Show that if C is closed under complementation, then BP-C
is closed under complementation.

Theorem 19.9 BP-⊕P ⊆ P#P.

Proof. Let A ∈ BP-⊕P. Then there is some language B ∈ P such that if
x ∈ A, then for a fraction of at least 2/3 of all y’s there is an odd number of
z such that 〈x, y, z〉 ∈ B, where y and z are polynomially bounded. And if
x /∈ A, then for a fraction of at most 1/3 of the y’s there is an odd number
of z such that 〈x, y, z〉 ∈ B.

Now consider a nondeterministic Turing machineM that consists of three
stages: It first guesses a y, then a z, and finally accepts iff 〈x, y, z〉 ∈ B. Let
p be the running time of M . Then M has w.l.o.g. at most 2p(|x|) computation
paths.

Let a(x, y) denote the number of accepting paths that M has on input x
in the subtree that corresponds to a particular y guessed in the first stage.
Next we modify M as follows: Whenever the test 〈x, y, z〉 ∈ B is positive,
we guess a new z and repeat. We do this p := p(|x|) times. Then we add an
artifical accepting path and repeat the whole process another p times. Thus
in the subtree corresponding to y, the number of accepting paths is now
(a(x, y)p + 1)p. Let the resulting Turing machine be N . N is a polynomial
time nondeterministic Turing machine. Thus it defines a function accN in
#P.

What is this good for? We claim that the following holds:

a(x, y) odd =⇒ (a(x, y)p + 1)p = 0 mod 2p

a(x, y) even =⇒ (a(x, y)p + 1)p = 1 mod 2p
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Let a := a(x, y). If a is even, then

a = 0 mod 2

ap = 0 mod 2p

ap + 1 = 1 mod 2p

(ap + 1)p = 1 mod 2p

If a is odd then

a = 1 mod 2

ap = 1 mod 2

ap + 1 = 0 mod 2

(ap + 1)p = 0 mod 2p.

Thus in order see whether x ∈ A in P#P, we query accN (x) and reduce
this value modulo 2p(|x|). We have

accN (x) =
∑
y

a(x, y)

= |{y | 〈x, y, z〉 ∈ B for an even number of z’s}| mod 2p(|x|).

Thus, if this reduced value is at most a fraction of 1/3 of all possible y’s,
then we accept. Otherwise, we reject. The total number of all y’s is 2q(n)

for some polynomial q.

Remark 19.10 1. Note that we do not need the probability gap of the
BP-operator. We could replace the threshold of 1/3 safely by 1/2 in
the last step of the proof.

2. We can replace the query to #P by a query to PP, i.e., BP-⊕P ⊆ PPP,
since we are essentially only interested in the highest bit of the #P-
function.



20 Graph isomorpishm

Let G = (V,E) and G′ = (V ′, E′) be two graphs. A graph isomorphism
from G to G′ is a bijection π : V → V ′ such that for all pairs of vertices u
and v,

{u, v} ∈ E if and only if {f(u), f(v)} ∈ E′.

In other words, G and G′ are the same graphs up to renaming the nodes.
We say that G and G′ are isomorphic. An isomorphism from G to G is
called an automorphism. Aut(G) denotes the set of all automorphisms of G.

The graph isomorphism problem is defined as

GI = {〈G,G′〉 | G and G′ are isomorphic}.

The subgraph isomorphism problem SubGI generalizes GI:

SubGI = {〈G,G′〉 | G is isomorphic to a subgraph of G′}.

We will show that it is very unlikely that GI is NP-complete.

Theorem 20.1 If GI is NP-complete, then PH = ΣP
2 = ΠP

2 .

On the other hand, we do not know whether GI is in P or BPP. SubGI,
however, is NP-complete.

Exercise 20.1 Show that SubGI is NP-complete.

The proof of Theorem 20.1 will be done in two steps:

1. First we will show that GI ∈ BP-NP. If GI were NP-complete and con-
sequently, GI were co-NP-complete, this would imply co-NP ⊆ BP-NP.

2. Second we will show that co-NP ⊆ BP-NP implies PH = ΣP
2 = ΠP

2 .

Lemma 20.2 There is a language A ∈ NP and a polynomial p such that
for all graphs G1 and G2 with n nodes:

1. If G1 and G2 are isomorphic, then |{y ∈ {0, 1}≤p(n) | 〈G1, G2, y〉 ∈
A}| = (n!)3.

2. If G1 and G2 are not isomorphic, then |{y ∈ {0, 1}≤p(n) | 〈G1, G2, y〉 ∈
A}| = 8 · (n!)3.
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Proof. We first interpret y as a graph G = (V,E) with n nodes and a
mapping f : V → V . 〈G1, G2, y〉 is accepted if G is isomorphic to G1 or
isomorphic to G2 and f ∈ Aut(G), see the next lemma.

If G1 and G2 are isomorphic, then there are n!/k graphs that are iso-
morphic to G1 where k = Aut(G1). Thus there are n! pairs (G, f) such that
G is isomorphic to G1 (and hence to G2) and f ∈ Aut(G).

If G1 and G2 are not isomorphic, then there are n! pairs that are iso-
morphic to G1 and n! different pairs that are isomorphic to G2 yielding 2n!
pairs in total.

Now we just interpret y not as one pair (G, f) but as three pairs (G, f), (G′, f ′), (G′′, f ′′)
such that each of the three graphs is isomorphic to G1 or G2 and each of
the three functions if a automorphims of the corresponding graph.

If G1 and G2 are isomorphic, we have there (n!)3 y’s and otherwise, there
are 8(n!)3 y’s. A is just the language of all 〈G1, G2, y〉 such that y has the
property above. A is in NP since we just have to guess three isomorphisms
to check whether G, G′, and G′′ are isomorphic to one of G1 and G2.

Lemma 20.3 Let G be a graph with n nodes and Aut(G) = k. Then there
are n!/k different graphs isomorphic to G.

Proof. We can order the set of nodes of G in n! ways. For any one such
ordering, there are another k − 1 orderings such that the resulting graph is
the same. Thus there are n!/k different graphs.1

LetH be a set of pairwise independent hash functions {0, 1}n → {0, 1}m+1

with 2m ≤ 8 · (n!)3 ≤ 2m+1. Let Y = {y | 〈G1, G2, y〉 ∈ A}.

• If G1 and G2 are isomorphic, then

Pr
h∈H

[∃y : h(y) = 0] ≤
∑
y∈Y

Pr[h(y) = 0] = |Y |/2m+1 ≤ 1/8

• If G1 and G2 are not isomorphic, then

Pr
h∈H

[∃y : h(y) = 0] ≥
∑
y∈Y

Pr[h(y) = 0]−
∑

y,z∈Y,y 6=z
Pr[h(y) = 0 ∧ h(z) = 0]

=
|Y |

2m+1
−

1
2 |Y |(|Y |+ 1)

(2m+1)2

=
|Y |(2m+1 − 1

2 |Y | −
1
2)

(2m+1)2

≥
2m(2m+1 − 2m − 1

2)

(2m+1)2

≥ 1

5
1Aut(k) acts on the set of all graphs that we get from G by relabeling the nodes. The

lemma now follows from Lagrange’s theorem.



106 20. Graph isomorpishm

for m ≥ 2. The first inequality follows from the inclusion-exclusion
principle, the second equality from the fact that H is pairwise inde-
pendent.

Now let B = {〈G1, G2, h〉 | ∃y : 〈G1, G2, y〉 ∈ A ∧ h(y) = 0}. The predi-
cate on the right hand side of the definition of B is in NP. The calculations
above show that GI ∈ BP-NP.

Theorem 20.4 GI ∈ BP-NP.

The second step of the proof of Theorem 20.1 is done by “operator
magic”.

Lemma 20.5 If co-NP ⊆ BP-NP, then PH = ΣP
2 = ΠP

2 = BP-NP.

Proof. BP-NP allows probability amplification. Thus,

ΣP
2 = ∃co-NP ⊆ ∃BP-NP ⊆ BP- ∃NP = BP-NP ⊆ ΠP

2 .



21 Interactive proofs (and zero knowl-
edge)

21.1 Interactive proofs

Languages A ∈ NP have the property that they have polynomially long
proofs of membership, that is, for all x ∈ A there is a polynomially long
proof that shows “x ∈ A” and for all x /∈ A, there is no such proof for the
fact “x ∈ A”.

One can see this as a game between two players, a prover and a verifier.
The prover wants to convince the verifier that “x ∈ A”. For NP, this game
is easy. The prover sends the proof to the verifier and the verifier checks it
in polynomial time. Now we make this process interactive: The verifier may
also send information to the prover (“ask questions”) and the prover may
send answers several times.1

Formally, an interactive proof system consists of two Turing machines, a
prover P and a verifier V . These two machines share a read-only input tape
and a communication tape. The verifier is a polynomial time probabilistic
Turing machine. The prover is computationally unbounded but it must halt
on all inputs and is only allowed to write strings of polynomially length on
the communication tape.

The protocol proceeds in rounds: On the verifier’s turn, it runs for a
polynomial number of steps and finally writes some string on the commu-
nication tape and enters a special state. Then the prover takes over and
computes as long as he wants and finally writes a polynomially long string
on the communication tape. Then it is again the verifier’s turn and so
on until the verifier finally accepts or rejects. In the first case, we write
(P, V )(x) = 1, in the second case (P, V )(x) = 0. The number of rounds, i.e,
the number of times the control changes between the prover and the verifier,
is always polynomial in |x|.

Definition 21.1 A pair (P, V ) as above is an interactive proof system for
a language A if

1. for all x ∈ A, Pr[(P, V )(x) = 1] ≥ 2/3 and

2. for all x /∈ A, Pr[(P̂ , V )(x) = 1] ≤ 1/3 for all provers P̂ .

1Such situations arise for instance in cryptography where one person has to convince
an other person that some information is correct but both persons do not trust each other.
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Above, the probability is taken over the random strings of V .

If x ∈ A, then there is a prover P that convinces V to accept with
probability ≥ 2/3. If x /∈ A, then no prover P̂ can make V accept with
probability > 1/3.

21.2 Examples

Example 21.2 As already mentioned, every language A ∈ NP is in IP, too.
Since NP = ∃P, there is a language B ∈ P such that for all x, x ∈ A iff
there exists a polynomially long y such that 〈x, y〉 ∈ B. The following IP
protocol is an interactive proof for A:

1. The prover uses exhaustive search to find a y such that 〈x, y〉 ∈ B. If
he finds one, then he sends such a y to the verifier. If he does not find
such a y, then he send anything.

2. The verifier checks whether 〈x, y〉 ∈ B. If it is, then he accepts, oth-
erwise he rejects.

It is clear that the protocol is correct. Since the prover is computationally
unbounded he has all the time in the world to find a proof y if it exists. Note
that the verifier does not need any randomization.

Two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
there is a bijective mapping π : V1 → V2 such that

for all u, v ∈ V , u 6= v: {u, v} ∈ E1 ⇐⇒ {π(u), π(v)} ∈ E2.

Graph isomorphism GI is the following problem: Given a pair of graphs
〈G1, G2〉, decide whether they are isomorphic. GI is obviously in NP, a
mapping π is a polynomially long proof that G1 and G2 are isomorphic.

Graph nonisomorphism GI, the complement of GI, has an IP protocol.
This is an interesting fact, as we do not know that GI ∈ NP (or GI ∈ co-NP):

Example 21.3 Here is an IP protocol for GI: The input are two graphs G1

and G2 both with n nodes. (If they have a different number of nodes, then
they cannot be isomorphic.) We can assume that the set of nodes of G1 and
G2 is {1, . . . , n}.

1. The verifier chooses a random i ∈ {1, 2} and a random permutation of
{1, . . . , n}. (How do you guess a random permutation cleverly?). The
verifier now sends H := π(Gi) to the prover, where π(Gi) is the graph
that one gets when replacing each edge {u, v} by {π(u), π(v)}.
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2. The prover now checks whether G1 and H are isomorphic or G2 and
H are isomorphic (by running through all permutations) and sends a
j such that Gj and H are isomorphic to the verifier.

3. The verifier accepts if i = j.

If G1 and G2 are not isomorphic, then the j that a suitable prover will find
will always be the i that the verifier sent, that is,

〈G1, G2〉 ∈ GI =⇒ there is a prover P : Pr[(P, V )(〈G1, G2〉) = 1] = 1.

If G1 and G2 are isomorphic, then no matter what the prover will do, he
has just a chance of 1/2 that i = j, that is,

〈G1, G2〉 /∈ GI =⇒ for all provers P̂ : Pr[(P̂ , V )(〈G1, G2〉) = 1] ≤ 1/2.

We can bring down the probability 1/2 to 1/4 running the protocol a second
time.

Remark 21.4 In the protocol for GI above, it is crucial that the random
tape of the verifier is private, i.e, the prover does not have access to it.
(Otherwise, the prover would know i.) But one can get rid of this restriction,
more general, one can show that whenever there is an IP protocol for some
language A with private random tape, then there is also one with public
random tape which the prover can read.

Remark 21.5 GI, by the way, is a candidate for a problem in NP \ P that
is not NP-complete. In fact, it can be shown that if GI was NP-complete,
then the polynomial time hierarchy would collapse.

Excursus: Zero knowledge

Look at the following protocol for GI, where we assume that the prover is a
probabilistic Turing machine, too.:

1. The prover randomly guesses an i ∈ {1, 2} and a permutation π ∈ Sn. He
sends the graph H := π(Gi) to the verifier.

2. The verifier now randomly selects a j ∈ {1, 2} and sends j to the prover.

3. The prover now computes a τ ∈ Sn such that τ(Gj) = H and sends τ to the
verifier.

4. The verifier accepts if τ(Gj) = H.

If the graphs are isomorphic, then (P, V ) will accept. If the graphs are not
isomorphic, then i and j will differ with probability 1/2 and no prover P ′ will be
able to find a permutation τ such that τ(Gj) = H = π(Gi) in this case.
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Note that prover does not need to be able to compute any isomorphism τ , it is
sufficient if he knows the isomorphism σ between G1 and G2. If i = j, then τ = π.
If i 6= j, then τ = π ◦ σ or τ = π ◦ σ−1.

The protocol does not reveal anything about the isomorphism (if one exists);
just sending π(Gj), j and π for random π and j would not be distinguishable from
the actual communication.

Definition 21.6 (Goldwasser, Micali & Rackoff) Let A ∈ IP via a prover–
verifier pair (P, V ). Then (P, V ) is called a zero knowledge protocol if there is a
polynomial time bounded probabilistic Turing machine M such that M on any input
x outputs a tuple (m1, . . . ,m`) such that the distribution produced by M is exactly
the distribution of the communication messages of (P, V ) on x.

Strictly speaking the definition above is “perfect zero knowledge with fixed
verifier”. There are other definitions of zero knowledge. Under a weaker definition,
one can show that every language in NP has a zero knowledge protocol.

Zero knowledge means that the verifier cannot learn anything about the proof
that x ∈ A, since the only thing he sees are the messages. But with the resources
he can use, he can produce these sequences without the help of the prover.

21.3 IP ⊆ PSPACE

Even though the prover is computationally unbounded, the power of IP is
bounded.

Theorem 21.7 IP ⊆ PSPACE.

Proof. Let (P, V ) be an interactive proof system for a language A. Let
p(|x|) denote the number of rounds on inputs of length |x| and let q(|x|) be
an upper bound for the length of the messages written by P . We construct
a polynomial space bounded Turing machine M that accepts A.

Input: x

1. Systematically enumerate all possible messages m1, . . . ,mp(|x|) of the
prover.

2. Systematically enumerate all possible random strings for V .

(a) Simulate V using the current random string pretending that the
messages of P are m1, . . . ,mp(|x|).

(b) Count how often V accepts and rejects.

3. If V had more accepting paths than rejecting paths, then accept x.
Otherwise, go on with the next sequence of messages.

4. If all sequences of messages have been tried, then reject x.
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If x ∈ A, then the prover P will make V accept. In particular, for the
sequence of messages that P produces, V will have more accepting path
than rejecting paths (in fact at least a fraction of 2/3 of the paths will be
accepting). If x /∈ A, then no prover P̂ will make V accept. Thus M will
not accept x, since otherwise, there will be a prover P̂ that will convince
V . (Note that P̂ is computationally unbounded and can just simulate M to
find the right set of messages that he has to send.)

Exercise 21.1 Prove that if the verifier is deterministic, then any inter-
active proof system can only accept languages in NP. (Hint: Guess the
communication.)
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In this chapter, we will prove the converse of Theorem 21.7, namely that
PSPACE ⊆ IP. In the view of Exercise 21.1, this is remarkably. It is com-
pletely unexpected that by just giving V a random string, the power of the
system jumps from NP to PSPACE.

Proof overview: It is sufficient to show QBF ∈ IP. The proof has several
steps:

1. First we need to normalize the quantified Boolean formulas in a certain
way.

2. Then we will arithmetize the formulas in a way similar to Chapter 7.
Every formula F will be represented by a number aF with a succinct
representation (i.e., a polynomial size circuit CF that computes aF ),
such that aF = 0 iff F is false. (Remember that the formulas F are
closed, so aF will be a number. Some intermediate aF will however be
(non-constant) polynomials.)

3. Now the prover has to convince the verifier that aF 6= 0. The problem
is that aF is too large and the verifier is not able to evaluate aF on
its own. The evaluation will be done modulo a small prime and uses
the structure of the formula. The prover will help the verifier with
evaluating the subformulas.

Excursus: The race for IP = PSPACE

N. Nisan observed that one could exploit the techniques used in the proof of Toda’s
theorem together with arithmetization to show that PH ⊆ IP. This started a race
in December 1989 to finally show that IP = PSPACE, which was finally proven by
A. Shamir. You can read about this—at least for computer science standards—
exciting race in the following article by László Babai. The proceedings should be
available in the library.

L. Babai. E-mail and the unexpected power of interaction. In Proc. 5th IEEE
Structure in Complexity Theory Conference, 1990, 30–44.
(Nowadays, the conference is called IEEE Computational Complexity Conference.)
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22.1 Simple quantified formulas

We will show that QBF ∈ IP. Since QBF is PSPACE-complete, the result
follows. First we will define a restricted version of QBF.

Definition 22.1 A quantified Boolean formula is called simple if

1. all negations are only applied to variables and

2. for every occurrence of a variable x, the number of universal quantifiers
between the occurrence and the binding quantifier of x is at most one.

Let QBF′ be the set of all F ∈ QBF that are simple.

Lemma 22.2 QBF ≤P QBF′

Proof. Let F be a closed quantified Boolean formula. We first move all
negation to the variables by using De Morgan’s laws and the rules ¬∃G =
∀¬G and ¬∀G = ∃¬G.

For the second property, we scan the formula from the outside to the
inside stopping at each universal quantifier. Assume that the current for-
mula is ∀xG(x, y1, . . . , y`, . . . ) and y1, . . . , y` are these variables of G that
are bounded outside of G, i.e, the variables that are affected by the univer-
sal quantifier. We replace the current formula by the following equivalent
formula:

∀x∃y′1 . . . ∃y′` : (
∧̀
λ=1

yλ ↔ y′λ) ∧G(x, y′1, . . . , y
′
`, . . . ).

Then we go on with G. Since we go from the outside to the inside of the
formula, it is easy to see that ∀x is the only universal quantifier between
y1, . . . , y` and their binding quantifiers.

The transformation is polynomial time computable and a many-one re-
duction from QBF to QBF′.

22.2 Arithmetization

We will map simple quantified Boolean formulas F to arithmetic circuits CF
that compute polynomials aF with the property that for all closed formulas

F is true ⇐⇒ aF 6= 0.

Our circuits will have two new operations, namely
∑

x and
∏
x where x is

a variable. These two new gates will have fanin one. If C is a circuit whose
top gate is

∑
x or

∏
x, then C computes P |x=0 + P |x=1 or P |x=0 · P |x=1,



114 22. Interactive proofs and PSPACE

respectively. Here, P is the polynomial computed by the subcircuit of C
that is obtained by removing the top gate of C and P |x=0 and P |x=1 are
the polynomials that we get when replacing x by 0 and 1, respectively.1

We define aF inductively. This implicitly will define CF , too.

1. If F = x, then aF = x. 2

2. If F = ¬x, then aF = 1− x.
(Remember that negations are only applied to variables.)

3. If F = G ∧H, then aF = aG · aH .

4. If F = G ∨H, then aF = aG + aH .

5. If F = ∃xG, then aF =
∑

x aG.

6. If F = ∀xG, then aG =
∏
x aF .

Exercise 22.1 Show by structural induction that for all closed simple quan-
tified Boolean formulas F : F is true iff aF 6= 0.
It might be easier to show the following more general statement: If F is
a simple quantified Boolean formula with k free variables. Then for all
ξ1, . . . , ξk ∈ {0, 1}, F (ξ1, . . . , ξk) is true iff aF (ξ1, . . . , ξk) 6= 0.

Lemma 22.3 Let F be a simple quantified formula F and let x be a variable
of F . Then degx aF ≤ 2` where ` is the length of F .

Proof. Since F is simple, x is in the scope of at most one universal
quantifier. This corresponds to the

∏
x operation which can double the

degree. If F = G ∧H, then the degrees of aG and aH add up, but the size
of G and H together is less than the size of F . All other operations do not
change the degree.

22.3 The protocol

The input is a closed simple quantified Boolean formula F of length n. It is
easier to consider a more general task: Given a simple quantified Boolean
formula F of length n, and a circuit DF that is obtained from CF be replac-
ing some of the free variables by constants from {1, . . . , 2O(n)}, convince the
verifier that the value of DF is not zero.

1Instead of introducing this new operation, one could just take two copies of the sub-
circuit of C and replace in one of them x by 0 and in the other one x by 1 and add or
multiply this results. This however yields an exponential blow up in the description which
we cannot afford, since then the verifier could not even read the circuit. But note that it is
not clear how to evaluate such a circuit in polynomial time, since one still has to evaluate
the subcircuit twice. So the verifier still needs the help of the prover.

2We do not distinguish between Boolean and integer variables here. You are old enough.



22.3. The protocol 115

1. The prover evaluates DF . Let dF be the value. He selects a prime
number k ∈ {2n, . . . , 22n} such that if dF 6= 0, then k does not divide
dF . If dF = 0, then he can select any prime number k in the given
range. The prover sends k and d̂ = dF mod k to the verifier.

2. The verifier now checks whether k is prime.3 He rejects if k is not
prime.

3. Now the prover convinces the verifier that dF = d̂ mod k.

(a) If F = x or F = ¬x, then the verifier can check this on its own.

(b) If F = G∨H or F = G∧H, then the prover goes on recursively.

i. He computes the values e and f of DG and DH , reduces them
mod k and send the values ê and f̂ to the verifier.

ii. The verifier now checks whether ê+ f̂ = d̂ mod k or ê · f̂ = d̂
mod k, respectively.

iii. If this is true, the prover now recursively has to convince that
indeed ê = e mod k and f̂ = f mod k.

(c) F = ∃xG and F = ∀xG are the interesting cases. We only treat
the first one, the second one is treated in a similar manner. The
circuit DG that corresponds to G computes a univariate polyno-
mial P in x of degree δ ≤ 2n.

i. The prover computes the coefficients of P , reduces them mod
k, and sends the reduced coefficients â0, . . . , âδ to the verifier.

ii. The verifier now computes P (0) = â0 mod k and P (1) =
â0 + · · · + âδ mod k and checks whether P (0) + P (1) = d̂
mod k.

iii. Now the prover has to convince the verifier that â0, . . . , âδ
are indeed the coefficients of P mod k. Since we are working
over GF(k), which is a field of size 2Ω(n), and the degree of P
is bounded by O(n), the event that P (z) = a′0+a′1z+· · ·+a′δzδ
mod k holds for a random z ∈ GF(k) but a′0, . . . , a

′
δ are not

the coefficients of P mod k is tiny. Thus the verifier chooses
a random z ∈ GF(z) and sends it to the verifier.

iv. Now the verifier has to convince that the value of DG, where
DG is the circuit CG with the free variable x replaced by
the constant z, is indeed â0 + â1z + . . . âδz

δ. This is done
recursively.

4. The verifier finally accepts if he accepted all of the subtasks.

3This can be done in polynomial time with the algorithm by Agrawal, Kayal, and
Saxena. Another method is having the verifier selecting a prime at random. If this is done
appropriately, then, with high probability, k does not divide dF .
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Theorem 22.4 PSPACE ⊆ IP.

Proof. QBF′ is PSPACE-complete, so it suffices to show QBF′ ∈ IP. If
F ∈ QBF′, then the prover–verifier pair above will accept CF with probability
1. The only problem is whether we can find a prime k. dF is bounded by
22n (see Chapter 15). Thus there are at most 2n many primes that divide
dF . By the prime number theorem, there are that many primes between 2n

and 22n.
It remains to bound the probability that if F /∈ QBF, a prover P̂ can

convince the verifier. The only place where a prover can cheat and the
verifier does not detect this is when in step 3.c.iii, the prover can convince
the verifier that a wrong sequence of coefficients are the coefficients of P
mod k. But since P has degree 2n but z is drawn from a set of size ≥ 2n,
this can happen with probability at most 2n/2n. The probability that in
any round an error happens is then 2n2/2n which tends to zero.



23 Arthur–Merlin games & interac-
tive proofs

23.1 Arthur–Merlin protocols

In the protocol for graph non-isomorphism (Example 21.3), it is crucial that
the prover has no access to the verifier’s random bits. But what happens
if the prover also gets access to the random string? Remark 21.4 says,
somewhat surprisingly, that this does not help the prover. The goal of this
chapter is to formalize and to prove this. (Although we will not give a full
proof.)

Let us first formalize what it means for an interactive proof system that
the prover knows the random bits. To distinguish between private random
bits (Definition 21.1) and public random bits, proof systems using the latter
are called Arthur–Merlin protocols: Arthur is the (polynomial-time bounded
probabilistic) verifier and Merlin is the (powerful) prover.

Definition 23.1 (Arthur–Merlin protocol) A k-round interactive proof
with public random coins or k-round Arthur–Merlin protocol is an interac-
tive proof system with a prover of unlimited computational power (here called
Merlin) and a verifier that is polynomial-time restricted and probabilistic
(called Arthur).

In the ith round for odd i, Arthur generates a random string of polyno-
mial length and sends it to Merlin. In the ith round for even i, Merlin sends
a message to Arthur. Finally, Arthur decides (in deterministic polynomial
time) to accept or reject. Arthur is not allowed to use any randomness
besides the random strings he sends to Merlin.

Let AM[k] be the set of languages that can be decided by a k-round
Arthur–Merlin game with error probability bounded by 1/3. Let AM =
AM[2].

Since Arthur must send all his random strings to Merlin, Arthur–Merlin
games correspond to interactive proofs with public coins.

Similar to AM[k], we denote by IP[k] the set of languages that can be
decided by an interactive protocol (with private coins) that needs at most
k rounds of interaction. Note that AM = AM[2], whereas IP = IP[poly].
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23.2 Graph non-isomorphism revisited

From the definitions of Arthur–Merlin games and interactive proof systems,
we immediately have AM[k] ⊆ IP[k]. (Merlin does not need to get any
extra information from Arthur in addition to the random strings: Since he
has arbitrary computational power, he can just simulate Arthur.) Somewhat
surprisingly, replacing private coins by public coins is possible at the expense
of two extra rounds of interaction.

Theorem 23.2 Let k : N → N be any function with k(n) computable in
time poly(n). Then

IP[k] ⊆ AM[k + 2].

We will not give the full proof of this theorem here. Instead, we will
revisit the graph non-isomorphism problem. In Example 21.3, it was crucial
that the prover had no access to the verifier’s random bits.

Theorem 23.3 GI ∈ AM[k] for some constant k ∈ N.

In the following, we are going to prove this theorem. The key idea to
prove this is to rephrase GI: Consider the set S = {H | G1 ≡ H ∨G2 ≡ H}.
Roughly speaking, the size of this set S depends on whether G1 and G2 are
equivalent: If they are equivalent, then the cardinality of S is n!. If they
are not, then |S| = 2n!. (Strictly speaking, G1 or G2 may have less than n!
equivalent graphs. We can cope with this by changing the definition of the
set S to S = {(H,π) | H ≡ G1 ∨H ≡ G2 and π ∈ aut(H)}, where aut(H)
is the automorphism group of H: π ∈ aut(H) if π(H) = H.) Membership
in S can be certified easily by provided a suitable permutation π.

Now we have set up the stage for a more complicated looking problem:
Instead of proving G1 6≡ G2, Merlin just has to convince Arthur that |S| =
2n!, i.e., that S is large. To do this, we use a set lower bound protocol.

In a set lower bound protocol, the prover wants to convince the verifier
that a set S has a cardinality of at least K. The verifier should accept if this
is indeed the case, he should reject if |S| ≤ K/2, and he can do anything if
K/2 < |S| < K. If we use the set S from above and set K = 2n!, then a set
lower bound protocol is just a Arthur–Merlin protocol for GI.

The tool for designing a set lower bound protocol are hash functions, sim-
ilar to the Valiant–Vazirani theorem (Chapter 17). In Section 17.1, pairwise
independent hash functions have been introduced (Definition 17.1).

We use the following protocol:

Setup: membership in S ⊆ {0, 1}m can be certified efficiently. Arthur and
Merlin both know K ∈ N. Merlin’s goal is to convince Arthur of
|S| ≥ K. Arthur should reject if |S| ≤ K/2. Let k ∈ N such that
2k−2 ≤ K ≤ 2k−1.
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Arthur: Randomly pick h : {0, 1}m → {0, 1}k from a set H of pairwise
independent hash functions. Randomly pick y ∈ {0, 1}k. Send h and
y to Merlin.

Merlin: Try to find a x ∈ S with h(x) = y. Let πx be the certificate of
x ∈ S. Send x and πx to Arthur.

Arthur: If πx proves x ∈ S and h(x) = y, then accept. Otherwise, reject.

In the following, let p = K2−k. If |S| ≤ K/2, then |h(S)| ≤ K/2 = p
22k.

Thus, Arthur will accept with a probability of at most p/2. It remains to
analyze the acceptance probability.

Lemma 23.4 Let H be a family of pairwise independent hash functions
{0, 1}m → {0, 1}k. Let S ⊆ {0, 1}m be any set with |S| ≤ 2k/2. Then

Pr
h∈H,y∈{0,1}k

(
∃x ∈ S : h(x) = y

)
≥ 3|S|2−k−2.

Proof. We prove Prh(∃x ∈ S : h(x) = y) ≥ 3
4p for any fixed y. Then it

follows also for a random y. By the inclusion-exclusion principle, we have

Pr
h∈H

(
∃x ∈ S : h(x) = y

)
≥
∑
x∈S

Pr
(
h(x) = y

)
− 1

2

∑
x,x′∈S,x6=x′

Pr
(
h(x) = h(x′) = y

)
≥ 2−k|S| − 1

2
|S|22−2k = |S|2−k

(
1− |S|

2k+1

)
≥ 3

4
p.

Altogether, Arthur accepts with a probability of at least 3p/4 if |S| ≥ K
and at most p/2 if |S| ≤ K/2. Note that p ∈ [1

4 ,
1
2 ] is known to both Arthur

and Merlin.
Given the set lower bound protocol, the protocol for GI follows easily:

The set S defined for GI allows efficient certification. Arthur accepts if
Merlin succeeded to convince him that |S| ≥ 2n! = K. Using Chernoff
bounds, the number of rounds necessary until both error probabilities are
bounded by 1/3 can be shown to be constant.

How does the Arthur–Merlin protocol for GI relate to the interactive
proof system of Example 21.3? The set S corresponds to the set of messages
that the verifier possibly sends in the protocol of Example 21.3. The Arthur–
Merlin protocol can be viewed as Merlin trying to convince Arthur that his
chance of convincing the private-coin verifier is large. This is also the idea
behind the proof of the more general Theorem 23.2.

Unlike in the private-coin protocol, the completeness of the Arthur–
Merlin protocol is not complete, i.e., smaller than 1 (the completeness is
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the probability that the verifier accepts an input from the language, the
soundness is the probability that the verifier rejects an input not from the
language). We note that also this can be patched: There exists also an
Arthur–Merlin protocol for GI with perfect completeness, and also this can
be generalized to arbitrary AM[k], maintaining a similar number of rounds.

Finally, any constant number of rounds is as good as two rounds of
interaction in Arthur–Merlin protocols: AM = AM[2] = AM[k] for any fixed
k ∈ N.



24 Hardness based on derandomiza-
tion

Given a randomized algorithm A, it is always desirable to ask is it possible
to remove the randomness completely from A. More generally, one could
ask is it possible to derandomize BPP? One approach to understand this
question would be to see its implications. As shown by Impagliazzo and
Kabanets, derandomizing BPP implies circuit lower bounds. In paticular,
it would show either Permananent does not have polynomial size circuits or
NEXP ∩ co−NEXP * P/poly.

In fact, we will assume something perhaps weaker, namely, that ACIT

can be derandomized.

Before we start, we introduce the following notion: We say that the
permanent is in NP, if the following language

{(A, v) | A is a {0, 1}-matrix and perm(A) = v}.

We abuse of notation, we call this language perm again.

24.1 Testing arithmetic circuits for the permanent

The aim of this section is given some polynomial f , to construct a circuit C
such that C computes the zero polynomial if and only if f is the permana-
nent.

24.1.1 Division-free circuits over Z

Let pn be a polynomial in n2 indeterminates Xi,j , 1 ≤ i, j ≤ n. Assume
that pn computes the permanent of n× n-matrices, i.e., pn(X) = perm(X),
where X denotes the matrix with entries Xi,j .

We can use pn to compute the permanent of any size ≤ n: If A is an
i × i-matrix, then we place A into the lower right corner, place ones to
the remaining entries on the diagonal, and fill the rest of the entries with
zeros. Let pi be the restriction obtained from pn. By the definition of the
permanent, we then have

p1(X(1)) = Xn,n

pi(X
(i)) =

i∑
j=1

Xn−i+1,n−i+jpi−1(X
(i)
j )
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where X(i) is the i× i-matrix in the lower right corner of X and X
(i)
j is the

jth minor of X(i) along the first row, i.e., the matrix obtained from X(i) by
deleting the first row and the jth column.

On the other hand, any sequence of polynomials p1, . . . , pn fulfilling
(24.1) and (24.1) necessarily computes perm.

Exercise 24.1 Prove this last claim.

Lemma 24.1 The language

ACP := {〈C, n〉 | C is an arithmetic circuit for perm of n× n-matrices over Z}

is polynomial-time many-one reducible to ACIT.

Proof. Assume that C computes a polynomial pn. Let pi be the restric-
tion of pn such that pi computes the permanent of i × i-matrices provided
that pn(X) = perm(X).

To check whether pn computes indeed the permanent, it suffices to check
whether p1, . . . , pn fulfill (24.1) and (24.1). In other words, we have to check
whether

h1(X) = p1(X(1))−Xn,n (24.1)

hi(X) = pi(X
(i))−

i∑
j=1

Xn−i+1,n−i+jpi−1(X
(i)
j ), 2 ≤ i ≤ n, (24.2)

are identically zero. To test whether h1, . . . , hn are identically zero, we can
equivalently test whether

h(X,Y ) = h1(X) + h2(X)Y + · · ·+ hn(X)Y n−1

is identically zero, where Y is a new variable.
By construction, C computes perm(X) iff h(X,Y ) = 0. Since every

hi is computable by a circuit of size polynomial in the size of C, h is also
computable by such a circuit. This circuit can be constructed from C in
polynomial time.

Corollary 24.2 Suppose that ACIT over Z is in NP. If perm over Z is
computable by division-free arithmetic circuits of polynomial size over Z,
then perm ∈ NP.

Proof. If perm is computable by arithmetic circuits of polynomial size,
then we can nondeterministically guess such a circuit C that computes the
permanent of n × n-matrices in time polynomial in n. Since ACIT is in
NP, so is ACP by Lemma 24.1. Therefore, we can verify our guess for C
nondeterministically in polynomial time. Once we have found C, we evaluate



24.1. Testing arithmetic circuits for the permanent 123

it deterministically at the given {0, 1}-matrix A in polynomial time, by doing
all operations modulo 2n logn + 1. Note that 2n logn has only polynomially
many bits and that the permanent of a {0, 1}-matrix cannot exceed 2n logn,
since it has at most n! terms. Finally, we simply check whether the computed
result equals v, the second part of the input.

24.1.2 Circuits over Q with divisions

Next we generalize the results of the preceding subsection to the case where
we only assume that perm has polynomial size arithmetic circuits over Q
(possibly using divisions). An arithmetic circuit C over Q with divisions
computes a rational function p/q where p and q are polynomials over Z. C
computes perm, if p = q ·perm. If no division by zero occurs when evaluating
C at a particular matrix A whose permanent we want to compute, then
perm(A) = p(A)/q(A).

Since we only want to compute a polynomial, we can however use the
following lemma due to Strassen, which basically states that we do not need
divisions (as long as we do not care about polynomial factors).

Lemma 24.3 (Strassen [Str73]) Let C be an arithmetic circuit over Q
of size s that computes a polynomial p ∈ Q[X1, . . . , Xn] of degree d. Let
ξ = (ξ1, . . . , ξn) be a point such that when we evaluate C at ξ, no division
by zero occur. Then there is a circuit C ′ of size poly(s, d, log maxi ξi) that
computes p and uses only divisions by constants from Q. Given C, C ′ can
be computed in time poly(s, d, log maxi ξi).

Before we proof this lemma, we first introduce some useful terminology.
A polynomial is called homogeneous, if all its monomials have the same
degree. Let f ∈ Q[X1, . . . , Xn] be a polynomial of degree d. We can write
f = f0 + f1 + · · ·+ fd such that fδ is a homogeneous polynomial of degree δ.

The main idea of the proof of the lemma is to consider the computation
not as a computation in Q(X1, . . . , Xn) of rational functions, but in the ring
of formal power series Q[[X1, . . . , Xn]]. Let f and g be polynomials that we
view now as formal power series. Let g = g0 − ĝ where g0 has degree zero
and ĝ has no constant term. If g0 6= 0, then we can express 1/g as a formal
power series as follows:

1

g
=

1

g0
· 1

1− ĝ/g0
=

1

g0

∞∑
i=0

(
ĝ

g0

)i
. (24.3)

Thus we can replace each division f/g in C by a multiplication f · 1
g with a

power series. But since we are computing only polynomials of degree d, we
can truncate the power series at degree d + 1 without changing the result.
Simce ĝ has no constant term, ĝd+1 has degree at least d + 1 and cannot
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contribute to the result. Therefore, we may truncate everything with degree
d+ 1 or higher.

Lemma 24.3. Our aim is to inductively transfer the circuit C into C ′.
Each gate that computes a rational function f/g will be replaced by a bunch
of gates that compute the homogeneous parts of f · 1

g up to degree d. By

the arguments given above, it follows that the circuit C ′ will produce the
desired result.

One problem when we want to replace the division by g with the mul-
tiplication of the geometric series is that we have to ensure that the degree
zero monomial g0 of g is nonzero. We can achieve this by first applying a
Taylor Shift : We replace each variable Xν at the input gates of C by Xν+ξν .
To do so, we replace the input gate by one addition gate whose inputs are
Xν and ξν . Let g̃ be the resulting polynomial by which we want to divide
now. We claim that after this shift, g̃0 6= 0. This is easily seen to be true
since g̃0 = g̃(0, . . . , 0) = g(ξ1, . . . , ξn) 6= 0 by the choice of ξ. After we have
removed all the divisions, we are then able to reverse the Taylor shift by
replacing the input variables by Xν − ξν

We now come to the inductive argument: We want to replace each gate
of C computing a rational function f/g by a bunch of gates that compute
the homogeneous parts up to degree d of f · 1

g (as a formal power series).

The induction start is easy: Each input gate is either Xν or a constant.
Both are homogeneous polynomials.

For the inductions step consider a gate G of C and assume that each
direct predecessor of C has be replaced by a bunch of gates computing the
homogeneous parts, i.e., if the two predecessors computed f1/g1 and f2/g2

in C, we now compute homogeneous polynomials hi,0, . . . , hi,d of degrees
0, . . . , d, respectively, such that

fi/gi = hi,0 + · · ·+ hi,d up to degree d (24.4)

in the ring of formal power series. If G is an addition gate, then we replace
it by d + 1 addition gates computing h1,i + h2,i for 0 ≤ i ≤ d. If G is a
multiplication gate, then we replace it by a bunch of gates computing

i∑
j=0

h1,jh2,i−j , 0 ≤ i ≤ d, (24.5)

which are the homogeneous parts of the product (up to degree d). Finally,
if G is a division gate, we first compute the homogeneous parts of g2/f2 up
to degree d. By (24.3), they are

1

h2,0

∑
jk=i

(
−
h2,k

h2,0

)j
, 0 ≤ i ≤ d. (24.6)
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Then we just have to multiply like in (24.5). Note that h2,0 is a constant.
Thus division by it is allowed.

In each of (24.4), (24.5), and (24.6), we only add a polynomial number
of gates. Thus the size of the new circuit C ′ is polynomial in the size of C,
the degree d, and the number of bits needed to write down the numbers ξi.
Furthermore, it is easy to see that C ′ can be computed in polynomial time.

Corollary 24.4 If there is a family of polynomial size arithmetic circuits
over Q with divisions computing perm, then there are two families C1,n and
C2,n over Z without divisions, such that C2,n computes a nonzero constant
cn ∈ Z and C1,n computes cn · perm(X) where X is an n × n-matrix with
indeterminates as entries.

Proof. We will modify the construction of the previous lemma. If there is
a rational constant used in C, we split it into its numerator and denominator.
The only other step that we will have to modify is (24.6). Here C2,n computes
the constant qd+1

2,0 and C1,n computes∑
jk=i

qd+1−j
2,0 hj2,k, 0 ≤ i ≤ d.

where q2,0 is the denominator of h2,0 instead of (24.6).

It remains to show how to find ξ and to prove that the size of the entries
is not too large, i.e., the number of bits needed to represent them should
be polynomial in n. The degree of the denominator of the rational function
computed at each gate is bounded by 2poly(n). Thus by the Schwartz–Zippel
Lemma applied to the product of all denominators, there is a ξ whose entries
have size 2poly(n) such that none of the denominators vanishes at ξ.

Modifiying the proof in the preceding subsection, it is now rather easy
to strengthen Corollary 24.2 to arithmetic circuits with divisions.

Theorem 24.5 Suppose that ACIT over Z is in NP. If perm over Q is
computable by polynomial size arithmetic circuits with divisions over Q, then
perm ∈ NP.

Proof. Given n, we nondeterministically guess two polynomial size division-
free arithmetic circuits C1 and C2 over Z. C1 depends on n2 variables and
C2 depends on no variables, that is, it computes a constant c.

We now check whether C1 computes c · perm. This can be done by
reduction to ACIT over Z as in the proof of Lemma 24.1. The only thing we
have to change is (24.1) to h1(X) = p1(X(1))− c ·Xn,n. The constant c can
be computed via C2.
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Since perm is computable by polynomial size circuits over Q with divi-
sions, we know by Corollary 24.4 that such circuits C1 and C2 exists.

Assume that we guessed C1 and C2 correctly. We now have to compute
perm of {0, 1}-matrices. The problem is that intermediate results may get
very large when evaluating C1 and C2. The output still is bounded by n!.
This time it does not however not suffice to compute mode n! + 1 since we
have to ensure that c is nonzero mod n! + 1, since we afterwards have to
divide by c. We have c ≤ (s2)2s2 where s2 is the size of C2. Therefore, c has
at most m := 2s2 log s2 many prime divisors. (Each of them is at least two.)
We guess a number p between 2n logn and 2n logn+m2

and deterministically
check whether it is prime. Then we check whether c mod p 6= 0. By the
prime number theorem, the number of primes in the given interval exceeds
the number of possible prime divisors of c. Thus, such a number p exists
and we will surely find it.

Finally, we evaluate C1 and C2 modulo p and then divide the results of
C1 by the constant computed by C2 modulo p. The results is the permanent
of the given input matrix.

24.2 Hardness result

We now come to the proof of the hardness result based on derandomization
of ACIT. The hardness result will not be as strong as the assumption in
Theorem ??. On the other hand, we will only assume that ACIT ∈ NP
(instead of BPP = P).

Definition 24.6 We say that NEXP∩co-NEXP is computable by polynomial-
size circuit if the following two conditions hold:

1. NEXP ∩ co-NEXP ⊆ P/poly and

2. perm over Q is computable by polynomial-size arithmetic circuits (with
divisions).

Exercise 24.2 Computing perm of a {0, 1}-matrix is clearly possible in de-
terministic exponential time. Why does the first condition of Definition 24.6
not imply the second one?

To prove our main theorem, we need the following results from complex-
ity theory.

Theorem 24.7 (Toda) PH ⊆ Pperm.

You saw a proof of this theorem in the complexity theory lecture.

Exercise 24.3 If perm ∈ NP, then Pperm ⊆ NP.
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Theorem 24.8 (Meyer, see [KL80]) If EXP ⊆ P/poly, then EXP = ΣP
2∩

ΠP
2 .

We will not prove Meyer’s Theorem here.

Exercise 24.4 Conclude that EXP ⊆ P/poly implies P 6= NP

Theorem 24.9 (Impagliazzo, Kabanets & Wigderson [IKW02]) If NEXP ⊆
P/poly then NEXP = EXP.

We do not give a proof of this result here.

Corollary 24.10 If NEXP ⊆ P/poly, then perm over Z is NEXP-hard.

Proof. If NEXP ⊆ P/poly, then NEXP = EXP = PH by Theorems 24.8
and 24.9. Since perm is PH-hard by Theorem 24.7, it is also NEXP-hard.

Finally, we come to the main result of this chapter.

Theorem 24.11 If ACIT over Z is in NP, then NEXP ∩ co-NEXP is not
computable by polynomial-size circuits (in the sense of Definition 24.6).

Proof. If perm is not computable by polynomial-size arithmetic circuits,
then the proof is finished by definition. It remains the case that perm is
computable by polynomial-size arithmetic circuits.

perm is PH-hard by Theorem 24.7. Since ACIT ∈ NP, we also know
that perm ∈ NP by Theorem 24.5. By Exercise 24.3, we know that the
polynomial hierachy collapses to NP, i.e., PH = NP = co-NP. A simply
padding argument (see Exercise 24.5) implies that NEXP = co-NEXP.

If NEXP 6⊆ P/poly, then we are done, because NEXP = co-NEXP =
NEXP ∩ co-NEXP. Therefore, assume that NEXP ⊆ P/poly. By Corollary
24.10, perm over Z is NEXP-hard. On the other hand, perm ∈ NP. Thus
co-NEXP = NEXP = NP.

co-NEXP = NP is easily disproved by the following diagonalization ar-
gument. We can even refute the weaker statement co-NEXP ⊆ NTime(2n):
We define a co-NEXP-machine M as follows: On input x of length n, M
simulates the xth nondeterministic Turing machine Mx for 2n steps. If Mx

accepts, then M rejects. Otherwise M accepts. Since M is a co-NEXP-
machine, it is easy for M to flip the outcome of the computation of Mx.

Exercise 24.5 Show that NP = co-NP implies that NEXP = co-NEXP.

Exercise 24.6 Give a more detailed description of the diagonalization ar-
gument in the proof of Theorem 24.11.
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25 Lower bounds for special classes of
arithmetic circuits

Proving lower bounds against circuits is an important question in Complex-
ity Theory. However, our knowledge of circuit lower bounds (both arithmetic
as well as Boolean) is very limited. In the previous chapter we have seen that
derandomizing ACIT is at least as hard as proving circuit lower bounds. In
this chapter we will study several syntactic as well as semantic restrictions
of arithmetic circuits and prove exponential lower bounds against them.

In this chapter and the next, abusing the notation, permn denotes the
following polynomial on the n × n matrix X = (xi,j)1≤i,j≤n, where xi,j are
indeterminates.

permn =
∑
π∈Sn

n∏
i=1

xi,π(i).

Similarly,

det
n

=
∑
π∈Sn

sgn(π)
n∏
i=1

xi,π(i).

Our goal is to prove lower bounds against special classes of arithmetic
circuits computing the polynomials permn, and detn.

25.1 Lower bounds for monotone circuits

In this section we will prove lower bounds for arithmetic circuits that does
not use negative constants. We restrict our selves to division free arithmetic
circuits. In particular, we show that perm does not have polynomial size
monotone circuits.

Let R ∈ {Z,R,Q} be a ring with a total order ≤R. An arithmetic circuit
C over R is said to be monotone if all the constants that appear in C are
+ve (.i.e., >R 0). Clearly, all the coefficients of a polynomial computed by
a monotone circuit are +ve.

An arithmetic circuit C is said to be homogeneous if every gate in g
computes a homogeneous polynomial.

Exercise 25.1 Show that if C is a monotone arithmetic circuit computing
perm, then C is homogeneous.

129
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Lemma 25.1 Let C be a monotone circuit of size s computing a homo-
geneous polynomial of degree d. The polynomial p computed by C can be
expressed as

p(X) =
t∑
i=1

gihi

where t = O(s), and d/3 ≤ degree(h), degree(g) ≤ 2d/3.

Proof. Let f1, . . . , fk be the maximal set of gates in C, with the following
properties:

• Each of the fi is a multiplication gate in C.

• deg(fi) > 2d/3, and degree(fi1), degree(fi2) ≤ 3d/2, where fi = fi1 ×
fi2 . 1

Now, there exists polynomials h′1, . . . , h
′
k such that p =

∑k
i=1 h

′
ifi. Where

the polynomial h′i is the partial derivative of p′(X, y) with respect o y, where
p′ is the polynomial computed by the circuit obtained by replacing the gate
fi with a new variable y. Note that degree(h′i) < d/3, and degree(fi1) ≤ d/3
or degree(fi2) ≤ d/3 for 1 ≤ i ≤ k. Now define:

hi =

{
h′ifi1 if degree(fi1) ≤ d/3
h′ifi2 otherwise

and,

gi =

{
fi1 if degree(fi1) > d/3

fi2 otherwise

This completes the proof, since k ≤ s, and p =
∑k

i=1 higi.

Exercise 25.2 Show that the gates f1, . . . , fk with the properties as above
exist in C.

Theorem 25.2 (Jerrum-Snir) Any monotone circuit C computing permn

requires size 2Ω(n).

Proof. Let C be a monotone arithmetic circuit of size s computing
permn. The proof will exploit the fact that there is an one-one correspon-
dence between the permutations in Sn and the monomials in permn. By
Lemma 25.1,

permn(X) =

k∑
i=1

gihi

1By the abuse of notation, fi also denotes the polynomial computed at the gate fi in
C
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g1, . . . , gk, and h1, . . . , hk are polynomials of degree between n/3 and 2n/3.
As permn is a homogeneous polynomial of degree n, and since C is mono-
tone, the polynomials gi, hi will have to be homogeneous. Let Var(gi) (reps.
Var(hi)) denote the set of variables in the polynomial gi (reps. hi). Clearly, if
Var(gi)∩Var(hI) 6= ∅, then gihi has a non-multilinear polynomial, and since
C monotone, this monomial cannot be cancelled. Thus, Var(gi)∩Var(hi) = ∅
1 ≤ i ≤ k. Also, monotonicity of C implies that each of the monomial that
appears in gihi should also appear in permn. Thus every monomial in gihi
corresponds to a permutation in Sn.

Claim 25.3 The number of monomials in gihi is at most (n/3)!(2n/3)!,
where 1 ≤ i ≤ k.

Assuming the claim, the number of monomials in the polynomial com-
puted by C is at most k(n/3)!(2n/3)!, and hence k ≥ n!

(n/3)!(2n/3)! . As k ≤ s,
we have s ≥

(
n
n/3

)
= 2Ω(n).

Proof of the Claim: Any monomial in permn contains exactly one vari-
able from each row and one variable from each column. So, if Xi,j ∈
Var(gi), then Xi,j′ /∈ Var(hi), and Xi′,j /∈ Var(hi) for 1 ≤ i′, j′ ≤ n.
Thus variables in gi (resp. hi) correspond to a degree(gi)× degree(gi) (resp.
degree(hi)× degree(hi)) sub matrix Ai (resp. Bi) of X. Moreover, the ma-
trices Ai and Bi are column as well as row disjoint. This means, there is a
partition Ji ∪ Ki of {1, . . . , n}, such that π(Ji) = Ji and π(Ki) = Ki, for
every permutation π ∈ Sn that corresponds to a monomial in gihi. However,
the number number of such permutation that fix sets Ji, and Ki is exactly
|Ji|! · |Ki|! ≤ (n/3!) · (2n/3!), as |Ji| = degree(gi), and |Ki| = degree(hi).
This finishes the proof.

Excursus: The power of single negation

Is it possible to extend the above argument to the case of arithmetic circuits that
use a bounded number of − gates? The answer is NO.

Exercise 25.3 Show that every arithmetic circuit over Z can be transformed into
an equivalent circuit that uses at most one − gate, with only a polynomial blow-up
in size.

Also, allowing one − gate in the arithmetic circuit makes it exponentially powerful
than monotone arithmetic circuits. In fact, Valiant [Val80] exhibited a polynomial
with positive coefficients that can be computed polynomial size arithmetic circuits
with one ’−’ gate, but requires exponential size for monotone arithmetic circuits.

Excursus: Non-commutative formulas

Non-commutativity is another restriction that one can consider for arithmetic cir-
cuits. Here we assume that xixj 6= xjxi for all i 6= j, in the underlying ring. The
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algebra of k × k matrices over any field is an example of a non-commutative ring.
Nisan [Nis91] exhibited a polynomial that can be computed by a commutative arith-
metic circuit of linear size, but requires non-commutative formulas of exponential
size. Nisan also concluded that non-commutative determinant requires exponential
size formulas.

More recently, Arvind and Srinivasan [AS10] (see also [CHSS11]) showed that
over matrix algebras, the arithmetic circuit complexity of permanent and determi-
nant are within a polynomial factor.

25.2 Multilinear formulas

Another possible restriction for arithmetic circuits would be to restrict the
type of polynomials computed by each gate in the circuit. One such re-
striction is to restrict the polynomials to be multilinear at each gate of the
circuit.

Definition 25.4 An arithmetic circuit C is said to be multilinear if every
gate g in C computes a multilinear polynomial. A multilinear formula is a
multilinear arithmetic circuit which is a formula.

Theorem 25.5 (Ran Raz [Raz04]) Any multilinear formula computing
detn or permn is of size nΩ logn.

We prove this theorem in the next chapter.



26 Multilinear Formula size lower
bound

We will prove Theorem 25.5 in this chapter. For a detailed exposition of the
proof please refer to the original paper by Raz [Raz04].

Definition 26.1 An arithmetic formula φ is said to be syntactic multilin-
ear, if for every × gate g = g1 × g2, Var(g1) ∩ Var(g2) = ∅, where Var(gi)
denotes the set of variables that appear as labels in the sub formula rooted
at gi.

Exercise 26.1 Let φ be a multilinear formula of size s. Show that there is a
syntactic multilinear formula φ′ of size O(s) computing the same polynomial
as φ.

26.1 Partial derivative matrix

Let f(X) be multilinear polynomial on n2 variables X = {X1, . . . , Xn2},
where n is even. Let {Y1, . . . , Ym} ∪ {Z1, . . . , Zm} be a partition of X. The
partial derivative matrix Mf of f with respect to this partition is a 2m×2m

matrix, where each row is indexed by a unique multilinear monomial in the
variables {Y1, . . . , Ym}, and each column is indexed by a unique multilinear
monomial in the variables {Z1, . . . Zm}. The entry of Mf corresponding
to the monomial pair (Yi1Yi2 . . . Yik , Zj1Zj2 . . . Zjt) is the coefficient of the
monomial Yi1Yi2 . . . YikZj1Zj2 . . . Zjt in f . See Figure 26.1 for an example.
Note that the entries of Mf are elements of the underlying field.

Let φ be a syntactic multilinear formula on the variables {Y1, . . . , Ym} ∪
{Z1, . . . , Zm} , and v be any gate in φ. We define Mv as the partial derivative
matrix of the polynomial computed at v with respect to the given partition

∅ X1 X2 X1X2

∅ 0 0 0 0

X3 0 0 -1 0

X4 0 1 0 0

X3X4 1 0 0 0

Figure 26.1: The matrix Mf of the polynomial f = X1X4 −X2X3 +X3X4

with respect to the partition {X1, X2} ∪ {X3, X4}.
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{Y1 . . . , Ym} ∪ {Z1. . . . , Zm}. Let Yv = {Y1, . . . , Ym} ∩ Var(v), and Zv =
{Z1, . . . , Zm} ∩Var(v), and

b(v) = (|Yv|+ |Zv|)/2; a(v) = min{|Yv|, |Zv|}; d(v) = b(v)− a(v).

Lemma 26.2 Let φ be a syntactic multilinear formula on the variables
{Y1, . . . , Ym} ∪ {Z1, . . . , Zm} , and v be a gate in φ. Then

1. rank(Mv) ≤ 2a(v);

2. If v is a + gate with v = v1 + v2, then rank(Mv) ≤ rank(Mv1) +
rank(Mv2); and

3. If v is a × gate with v = v1 × v2, then rank(Mv) = rank(Mv1) ·
rank(Mv2)

Exercise 26.2 Prove Lemma 26.2.

Proof overview: It suffices to show that any syntactic multilinear formula
computing permn requires size nΩ(logn). The proof can be organized into
the following parts:

Part 1: Exhibit a sufficient conditions under which the polynomial f com-
puted by a syntactic multilinear formula φ has low rank.

Part 2: Show the existence of these sufficient conditions in random sub-
partitions of the variables in a syntactic multilinear formula φ.

Part 3: Show that random projections of determinant/permanent have
full rank.

Central Paths

Let φ be a syntactic multilinear formula as above, and k be a positive integer.
A node v in φ is said to be k-unbalanced, if d(v) ≥ k. A simple leaf-to-root
path γ in φ is said to be k-unbalanced, if it contains at leas one k-unbalanced
node. The path γ is said to be central if for every u, v in γ such that u is
the father of v in φ, b(u) ≤ 2b(v).

It is not hard to see that φ has at least one central path. A gate v in
φ is said to be k-weak if every central path that reaches v is k-unbalanced.
The formula φ is said to be k-weak if the root gate of φ is k-weak.
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26.2 Part-1: k-weak formulas have low rank

Lemma 26.3 Let φ be a syntactic multilinear formula over the variables
{Y1, . . . , Ym} ∪ {Z1, . . . , Zm}, and v be a gate in φ. If v is k-weak, then

rank(Mv) ≤ size(φv)2
b(v)−k/2

where φv is the sub formula rooted at v.

Proof. The proof is by induction on the structure of the formula φ. The claim
holds if v is a leaf in φ. If v is a k-unbalanced node, rank(Mv) ≤ 2b(v)−k, as
a(v) ≤ b(v) − k, and by Lemma 26.2. We assume that v is neither a leaf,
nor a k-unbalanced node in for the remaining part of the proof. There are
two cases:

Case 1: v is a product gate, i.e., v = v1×v2. As v is not k-unbalanced,
either v1 or v2 is k-weak. Without loss of generality, assume that v1 is k-
weak. Then by induction hypothesis, rank(Mv1) ≤ size(φv)2

b(v1)−k/2, and
by Lemma 26.2,

rank(Mv) ≤ size(φv)2
b(v1)+a(v2)−k/2 ≤ size(φv)2

b(v)−k/2.

Case 2 : v is a sum gate, i.e., v = v1 +v2. Clearly, either b(v) ≤ 2b(v1)
or b(v) ≤ 2b(v2). If both hold, then by induction hypothesis, we have

rank(Mv1) ≤ size(φv1)2b(v1)−k/2

and
rank(Mv2) ≤ size(φv2)2b(v2)−k/2

which in turn implies

rank(Mv) ≤ size(φv)2
b(v)−k/2

as size(φv) = size(φv1) + size(φv2) + 1. Now, suppose without loss of gener-
ality that b(v) ≤ 2b(v1) and b(v) 2b(v2). Then, a(v2) ≤ b(v) − k/2, and by
Lemma 26.2 we have

rank(Mv2) ≤ 2b(v)−k/2.

This completes the proof, since size(φv) ≥ size(φv1) + 1.

26.3 Part-2: Random partitions give k-weak formulas

A random partition of the variables

We will describe a procedure for obtaining a random restriction of a syntactic
multilinear formula φ such that, whp the restriction gives a partition under
which the resulting formula is k-weak, for some suitably chosen k. Let
X = (Xi,j)1≤i,j≤n be a matrix of n2 variables. Let m = dn1/3e. We now
describe a random map A from X to {Y1, . . . , Ym} ∪ {Z1, . . . , Zm} ∪ {0, 1}.
A is constructed as follows:
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• Choose 2m distinct row indices q1, . . . , qm, and r1, . . . , rm from [1, n]
uniformly at random.

• Choose 2m distinct column indices s1, . . . , sm, and t1, . . . , tm from
[1, n] uniformly at random.

• With probability half, assign the sub-matrix(
Xqi,si Xqi,ti
Xri,si Xri,ti

)
→ ( yi zi1 1 )

i.e., let A(xqi,si) = yi, A(xqi,ti) = zi, A(xri,si) = 1, A(xri,ri) = 1, and

• with probability half assign(
Xqi,si Xqi,ti
Xri,si Xri,ti

)
→
(
yi 1
zi 1

)
i.e., let A(xqi,si) = yi, A(xqi,ti) = 1, A(xri,si) = zi, A(xri,ri) = 1.

• Let I = [1, n]\({q1, . . . , qm}∪{r1, . . . , rm}), and J = [1, n]\({s1, . . . , sm}∪
{t1, . . . , tm}). Let σ be an arbitrary perfect matching between I and
J . Set A(Xi,σ(i)) to 1 for all i ∈ I.

• A maps all the remaining variables to 0.

The random restriction A produces k-weak formulas.

Lemma 26.4 Let φ be a syntactic multilinear formula on X = (Xi,j)1≤i,j≤n.
Suppose size(φ) ≤ nε logn, for some small enough constant ε. Let φA be the
formula obtained from φ by applying the random restriction A. Then, with
probability 1− o(1), the formula φA is k-weak for k = n1/32.

We will be proving Lemma 26.4 in the next Chapter.

26.4 Part-3 : permn has full rank under random par-
titions

Proof.[of Theorem 25.5] We will consider the case of permn. The argument
for detn is analogous. For the sake of contradiction, suppose there is a
syntactic multilinear formula φ if size nε logn computing permn, where ε is
the constant from Lemma 26.4. Let f denote the function computed by φA,
where A is the random restriction described in Section 26.3. Note that f is
the permanent of the matrix A(X), and we have

f(Y1, . . . , Ym, Z1, . . . , Zm) =

m∏
i=1

(Yi + Zi)
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By Lemma 26.4, we have

rank(MφA) ≤ size(φA)2m−k/2 ≤ nε logn2m−k/2 < 2m.

for our choice of m = dn1/3e, and k = n1/32.

Exercise 26.3 Show that rank(Mf ) = 2m.

Now the exercise above leads us to a contradiction. This completes the proof
in the case of permn. The argument for detn is analogous.



27 Random restrictions produce
k-weak formulas: proof of
Lemma 26.4

We will prove Lemma 26.4 in this chapter. For a detailed exposition of the
proof please refer to the original paper by Raz [Raz04].

Proof overview:
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