Katz, Lindell Introduction to Modern Cryptrography Slides Chapter 10

Markus Bläser, Saarland University

Key-exchange

What is a key-exchange protocol Π ?

- ▶ Alice and Bob start by holding a security parameter 1ⁿ.
- Then they run Π (using private random bits).
- Alice and Bob can communicate with each other using the protocol.
- The channel is authenticated, i.e., the adversary can listen to their communication but not manipulate it. (This is an issue in practical applications!)
- ▶ In the end, Alice and Bob output $k_A, k_B \in \{0, 1\}^n$.
- ► Correctness requirement: $k_A = k_B (= k)$.
- ▶ Their communication is recorded in a transcript trans.

Key-exchange (2)

The key-exchange experiment $KE_{\mathcal{A},\Pi}^{eav}(n)$:

- 1. Two parties holding 1^n execute Π resulting in a transcript trans and a key k.
- 2. $b \in \{0,1\}$ is chosen uniformly at random. If b=0, then set $\hat{k}=k$. If b=1, then choose $\hat{k} \in \{0,1\}^n$ uniformly at random
- 3. \mathcal{A} is given trans and \hat{k} and \mathcal{A} outputs a bit b'.
- 4. The outcome of the experiment is 1 if b = b' and 0 otherwise.

Definition (10.1)

 Π is secure in the presence of an eavesdropper if for all ppt \mathcal{A} ,

$$\Pr[\mathsf{KE}^{\mathsf{eav}}_{\mathcal{A},\Pi}(\mathfrak{n}) = 1] \leq \frac{1}{2} + \mathsf{negl}(\mathfrak{n}).$$

Diffie-Hellman protocol

Construction 10.2:

Common input is 1ⁿ

- 1. Alice runs Gen to obtain (G, q, g)
- 2. Alice chooses a uniform $x \in \mathbb{Z}_q$ and computes $h_A := g^x$.
- 3. Alice sends (G, q, g, h_A) to Bob.
- 4. Bob chooses a uniform $y\in\mathbb{Z}_q$ and computes $h_B:=g^y.$ Bob sends h_B to Alice and outputs $k_B:=h_A^y$
- 5. Alice outputs $k_A := h_B^x$.

Protocol is correct, as

$$k_A = h_B^x = g^{xy} = h_A^y = k_B.$$

In practice, G and g are fixed in advance.

Diffie-Hellman protocol (2)

In the protocol, the keys are group elements. Modify the experiment accordingly $\longrightarrow \hat{KE}_{\mathcal{A},\Pi}^{eav}(n)$.

Theorem (10.3)

If the decisional Diffie–Hellman problem is hard relative to Gen, then the Diffie–Hellman key exchange protocol Π is EAV-secure (with respect to the experiment $\widehat{KE}_{\mathcal{A},\Pi}^{\mathsf{eav}}(\mathfrak{n})$.

Diffie-Hellman is insecure against man-in-the-middle attacks.