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Cryptography, winter term 16/17:
Sample solution to assignment 2

Cornelius Brand, Marc Roth

Exercise 2.1 (Messing up the one-time pad) Consider the following modification
of the one-time pad :

• K =M = {0, 1}`, C = {0, 1}`+1

• GEN generates a uniform key

• ENC outputs c := (m⊕ k)||Parity(k) (on input (k,m))

• DEC outputs m := (c1 . . . c`)⊕ k (on input (c = c1, . . . c`c`+1, k) )

where ⊕ is the bitwise exclusive-or, || is string concatenation and Parity(k) is defined as
the number of 1s in k modulo 2.
We give an example: Let ` = 6, m = 101010 and assume GEN did output the key
k = 110010. As the number of 1s in k is odd, it holds that Parity(k) = 1. Therefore

ENCk(m) = (m⊕ k)||Parity(k) = 011000||1 = 0110001

and
DECk(c) = (c1c2c3c4c5c6)⊕ k = 011000⊕ 110010 = 101010

Prove that this modification of the one-time pad is not perfectly secret.
Hint: A common way to show that a scheme is not perfectly secret is to construct an
adversary A and to show that A wins the adversarial indistinguishability experiment
with probability > 1

2 .

Solution 2.1 (Messing up the one-time pad) We construct an adversary A that
will always win: A sends messages m1 = 0` and m2 = 0`−11. After A recieves the
challenge text c = c1 . . . c`c`+1, it checks whether Parity(c1 . . . c` ⊕m1) = c`+1. If this is
the case it outputs 1 otherwise it outputs 0.
We show that A is always right. If b = 1 then c = (m1 ⊕ k)||Parity(k) and therefore
Parity(c1 . . . c` ⊕ m1) = Parity(m1 ⊕ k ⊕ m1) = Parity(k) = c`+1. It follows that A
outputs 1 which is right.
If b = 0 then c = (m2 ⊕ k)||Parity(k) = (m1 ⊕ 0`−11 ⊕ k)||Parity(k) and therefore
Parity(c1 . . . c`⊕m1) = Parity(m1⊕ 0`−11⊕ k⊕m1) = Parity(0`−11⊕ k) 6= Parity(k) =
c`+1. It follows that A outputs 0 which is right. Therefore

Pr
[
PrivKeav

A,Π = 1
]

= 1 >
1

2
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Exercise 2.2 (Negligible functions) Recall the definition of a negligible function (De-
finition 3.4).

(a) Let c be a constant. Which of the following two functions is negligible? Prove your
answer.

(i) f(n) :=
(
n
c

)−1

(ii) g(n) := (log n)− logn

(b) Prove Proposition 3.6.

Solution 2.2 (Negligible functions)

(a)

(i) Not negligible: It holds that
(
n
c

)
≤ nc and therefore

1(
n
c

) ≥ 1

nc

(ii) Negligible: Fix a constant c. It holds that

g(n) = (log n)− logn =
1

nlog logn
<

1

nc

for all n such that log log n > c.

(b) Let p be an arbitrary but fixed polynomial.

(i) As p is a polynomial, p′(x) := 2p(x) is also a polynomial. As negl1 and negl2
are negligible, there are N1 and N2 such that ∀n ≥ N1 : negl1(n) < 1

p′(n) and

∀n ≥ N2 : negl2(n) < 1
p′(n) . Therefore

∀n ≥ max{N1, N2} : negl1(n) + negl2(n) <
1

p(n)

(ii) We have to show that for a fixed polynomial q, it holds that there is an N such
that forall n ≥ N we have

q(n) · negl1(n) <
1

p(n)

As q is a polynomial, q · p is also and as negl1 is negligible we have that there
exists an N such that

∀n > N : negl1(n) <
1

q(n) · p(n)

Therefore

∀n > N : q(n) · negl1(n) < q(n) · 1

q(n) · p(n)
=

1

p(n)
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Exercise 2.3 (Perfect secrecy) Recall Lemma 2.4. One direction was proven in the
lecture. In this exercise it is your task to prove the other direction, i.e., show that perfect
secrecy of (GEN,ENC,DEC) implies

Pr [ENCk(m) = c] = Pr
[
ENCk(m′) = c

]
(1)

for all m,m′ ∈M, c ∈ C.

Solution 2.3 (Perfect secrecy) Let m1,m2 and c be arbitrary but fixed and consider
the following probability distribution over the message space M:

Pr [M = m] =

{
1
2 if m = m1 or m = m2

0 otherwise

Furthermore, let

P := Pr [ENCk(m1) = c] + Pr [ENCk(m2) = c]

If P = 0 we are done. Otherwise we have

Pr [ENCk(m1) = c] = P · Pr [ENCk(m1) = c]

P

= P ·
Pr [ENCk(m1) = c] · 1

2
1
2 · (Pr [ENCk(m1) = c] + Pr [ENCk(m2) = c])

= P · Pr [ENCk(m1) = c] · Pr [M = m1]∑
m∈M Pr [ENCk(m) = c] · Pr [M = m]

= P · Pr [ENCk(M) = c|M = m1] · Pr [M = m1]∑
m∈M Pr [ENCk(M) = c|M = m] · Pr [M = m]

= P · Pr [C = c|M = m1] · Pr [M = m1]∑
m∈M Pr [C = c|M = m] · Pr [M = m]

= P · Pr [C = c|M = m1] · Pr [M = m1]

Pr [C = c]

= P · Pr [M = m1|C = c] = P · Pr [M = m1] =
P

2

Similary, with the same computation we get Pr [ENCk(m2) = c] = P
2 and therefore

Pr [ENCk(m1) = c] = Pr [ENCk(m2) = c]

Exercise 2.4 (Perfect indistinguishability) Recall Lemma 2.6:

An encryption scheme Π is perfectly secret if and only if it is perfectly indistinguishable.

Prove one direction of your choice.
Hint: It may be advisable to use the equivalent definition of perfect secrecy as stated
in Lemma 2.4.
Bonus: Prove the other direction as well.
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Solution 2.4 (Perfect indistinguishability) First we show that perfect secrecy im-
plies perfect indistinguishability. Therefore let A be an arbitrary but fixed adversary.
Consider an execution of the adversarial indistinguishability experiment. Let B be the
bit that was chosen uniformly at random, Chal be the ciphertext (the challenge) A
recieved and B′ the output of A. We claim that

Pr
[
PrivKeav

A,Π = 1|B = 1
]

= Pr
[
PrivKeav

A,Π = 0|B = 0
]

which can be proven as follows:

Pr
[
PrivKeav

A,Π = 1|B = 1
]

= Pr
[
B′ = 1|Chal = ENCk(m1)

]
=
∑
c∈C

Pr
[
B′ = 1|Chal = ENCk(m1),ENCk(m1) = c

]
· Pr [ENCk(m1) = c]

=
∑
c∈C

Pr
[
B′ = 1|Chal = c

]
· Pr [ENCk(m1) = c]

=
∑
c∈C

Pr
[
B′ = 1|Chal = c

]
· Pr [ENCk(m0) = c]

=
∑
c∈C

Pr
[
B′ = 1|Chal = ENCk(m0),ENCk(m0) = c

]
· Pr [ENCk(m0) = c]

= Pr
[
B′ = 1|Chal = ENCk(m0)

]
= Pr

[
PrivKeav

A,Π = 0|B = 0
]

where the fourth equation follows from perfect secrecy. Similary we can prove that

Pr
[
PrivKeav

A,Π = 1|B = 0
]

= Pr
[
PrivKeav

A,Π = 0|B = 1
]

It follows that

Pr
[
PrivKeav

A,Π = 1
]

= Pr
[
PrivKeav

A,Π = 1|B = 1
]
· Pr [B = 1] + Pr

[
PrivKeav

A,Π = 1|B = 0
]
· Pr [B = 0]

=
1

2
· (Pr

[
PrivKeav

A,Π = 1|B = 1
]

+ Pr
[
PrivKeav

A,Π = 1|B = 0
]
)

=
1

2
· (Pr

[
PrivKeav

A,Π = 0|B = 0
]

+ Pr
[
PrivKeav

A,Π = 0|B = 1
]
)

= Pr
[
PrivKeav

A,Π = 0|B = 0
]
· Pr [B = 0] + Pr

[
PrivKeav

A,Π = 0|B = 1
]
· Pr [B = 1]

= Pr
[
PrivKeav

A,Π = 0
]

and therefore

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
Now we show the that perfect indistinguishability implies perfect secrecy. Actually we
show the contraposition, i.e., we assume that the encryption scheme is not perfect. In
this case there are messages m0,m1 and a ciphertext and an ε > 0 such that

Pr [ENCk(m1) = c] = Pr [ENCk(m0) = c] + ε (2)
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We construct an adversary A as follows: A outputs m1 and m0 in the first step and
as soon as it recieves a challenge c′ it checks whether c′ = c. If this is the case then
A outputs 1 and otherwise it outputs a bit at random. The intuition behind the follo-
wing computation can easily be seen by drawing the tree for the different cases of the
experiment. Let B, and B′ as before. It holds that

Pr
[
PrivKeav

A,Π = 1|B = 1
]

= (Pr
[
PrivKeav

A,Π = 1|B = 1,ENCk(m1) = c
]
· Pr [ENCk(m1) = c]

+ Pr
[
PrivKeav

A,Π = 1|B = 1,ENCk(m1) 6= c
]
· Pr [ENCk(m1) 6= c])

= (1 · Pr [ENCk(m1) = c] +
1

2
· Pr [ENCk(m1) 6= c])

= Pr [ENCk(m1) = c] +
1

2
· Pr [ENCk(m1) 6= c]

And furthermore we have

Pr
[
PrivKeav

A,Π = 1|B = 0
]

= (Pr
[
PrivKeav

A,Π = 1|B = 0,ENCk(m0) = c
]
· Pr [ENCk(m0) = c]

+ Pr
[
PrivKeav

A,Π = 1|B = 0,ENCk(m0) 6= c
]
· Pr [ENCk(m0) 6= c])

= (0 · Pr [ENCk(m0) = c] +
1

2
· Pr [ENCk(m0) 6= c])

=
1

2
· Pr [ENCk(m0) 6= c]

Putting these two together we get that

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
· Pr

[
PrivKeav

A,Π = 1|B = 1
]

+
1

2
· Pr

[
PrivKeav

A,Π = 1|B = 0
]

=
1

2
Pr [ENCk(m1) = c] +

1

4
· Pr [ENCk(m1) 6= c] +

1

4
· Pr [ENCk(m0) 6= c]

A similar computation yields

Pr
[
PrivKeav

A,Π = 0
]

=
1

2
Pr [ENCk(m0) = c] +

1

4
· Pr [ENCk(m0) 6= c] +

1

4
· Pr [ENCk(m1) 6= c]

Using Equation 2 we conclude

Pr
[
PrivKeav

A,Π = 1
]
− Pr

[
PrivKeav

A,Π = 0
]

=
1

2

(
1

2
Pr [ENCk(m1) = c]− 1

2
Pr [ENCk(m0) = c]

)
=
ε

2
> 0

and therefore

Pr
[
PrivKeav

A,Π = 1
]
>

1

2
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