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Some general ideas

e use a different scheme for numbering (same counter for all theorem envi-
ronments, and possibly even equations) — less confusion whether Lemma x,
FEquation x or Whatever x is meant.

o formulate Master theorem to yield O(. ..) instead of O(...) and/or relax notion
of base cases (e.g. strict equality to inequality, N — R~ instead of N — N)?

e replace log by ILog (integer log) where |loga(x + 1)] is meant.

o replace “i-th largest element” by “element of i-th order”, “element of i-th rank”

or the like (in chapter 4, median-of-medians-based select algorithm,).

Section 1.3, Definition 1.2 (p. 5)
3. ©(f) = O(f) NQf) Ste,

Section 1.4.2, Lemma 1.10 (p. 8) Let g1,...,g9¢ : N — N R=p be functions
such that ...

Section 3.1.1 (p. 17) The last layer might be shorter and is stored in
A[2"  heap-size]. Here h = log(heap-size) — 1 = |log,(heap-size)| is the
height of the tree, |...]|

Section 3.1.3 (p. 19) Now assume we have an array A[l..n] and we want to
convert it into a heap. We can use the procedure Heapify in a bottom-up man-
ner. Because the indices Hr/2——#r}-are-ateaves—the {|n/2+1],...,n}
all represent leaves, each subtree with a root +=#+2+ at j > [n/2] is a
heap. Then we apply Heapify and ensure the heap property in a layer by
layer fashion. The correctness of the approach can be easily proven by reverse
induction on .

Section 4.2, Proof of Lemma 4.4 (p. 28) Since m is the median of the
medians, [(r — 1)] medians are larger and |1 (r — 1)|4 medians are smaller
than m.
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Section 4.2, before Remark 4.6 (p. 29) We can use Lemma 4.5 to solve
(4.1). We can bound 1—70714—2 from above by %n for n > 60. Since %+%—|—% =

2% <1, we get that t(n) < c¢-n with e==432 ¢ = 102.

The parameter choices corresponding to equation (4.1) are

_ _ 1 __ 11 _ 17 _
6—2, 61—5, 62_175’ d—g, N—GO,

17/5
e} = max{=35,8} = 102.

e =28.

— d
Thus, Cc = max{m,

Section 6.1 (p. 38) If Key(r) = k +, then we are done.

Section 6.1, Algorithm 26 (p. 38)

Algorithm 26 BST-search

Input: node x, key k

Output: a node y € T'(x) with Key(y) = k if such a y exists,
NULL otherwise

if x = NULL or k = Key(z) #=J<eyfz} then

return x
if k£ < Key(z) —~<Jes{#) then
return BST-search(Left(x), k)
else
return BST-search(Right(z), k)

Section 7.1, Proof of Lemma 7.2 (p. 45) We show by induction on # h
that. ..

Section 7.2.2, before Observation 7.4 (p. 46—47) ...a virtual leaf is

replaced by an internal a—rtwat node. ..

Section 7.2.2, first table (p. 48)

before insertion after insertion after rotation
Bal(z) -1 -2 — 0
Bal(y) 0 -1 0
Height(77) h h h
Height(T3) A= h B+ h A+ R
Height(73) h——+ h A2 h+ 1 A+2 h+1
Height(T'(x)) A3 h + 2 A4 h + 3 A+2 h+1
Height(T'(y)) hA+2h+1 A3 h + 2 A3 h + 2

All numbers in rows 4—7 were decreased by exactly one.




Section 9.1 (p. 61) Of course, in the worst case, every bit has to be changed  reported on

to 0 is-set—+e—+ and we have to flip all # / bits (and get an overflow error). — 2011-12-01 & 2011-12-03
Section 9.1.1 (p. 62) Therefore, the total time is reported on
2011-12-06
wl—1 wl—1
=3 g 2 tgri < ”Z 5 =
=0

and the amortized costs are |...|

Chapter 10, Theorem 10.1 (p. 71) reported on
2011-11-23
3. Iff( ) = Q(n!°8 4+¢) for some € > 0 and a—FrtbH-<-dfw} af([n/b])
df( or some constant d < 1 and all sufficiently large n, then

fi o
( ) = O(f(n)).

Chapter 10, Exercise 10.1 (p. 71) Let f: N — N, f # 0. Show that if f reported on
fulfills HFrtbh—<-dfr af([n/b]) < df(n) for some constant d < 1 and all 2011-11-23

sufficiently large n, then f(n) = Q(n'°8 4€) for some ¢ > 0.

Chapter 10, Proof of Theorem 10.1 (p. 72) We start with the first two reported on
cases. Let e :=log, a and 7 := a/b°. srespeetively 2011-11-23

Section 11.1, before Exercise 11.1 (p. 74) The chromatic number x(G) reported on
of a graph G is the smallest number %k such that there is a proper k-coloring 2012-01-29
of G.

Section 11.1, after Exercise 11.1 (p. 74) |[...| how can we decide whether reported on
G has a proper k-coloring? First, we can try all preper k-colorings. 2012-01-29

Chapter 12, after Exercise 12.1 (p. 80) A cycle is a walk such that vg = vy, reported on
k>0 (if G is directed) or 4=+ k > 2 (if G is undirected), ... 2012-01-11

Section 12.1 (p. 81 bottom) With an adjacency-listmstsi-representation, reported on
however, ... 2012-01-11

Section 12.2.2 (p. 85) If we have an adjacency-matrixtist representation, reported on
then the running time is O(|V|?). 2012-01-11
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Section 13.2, Proof of Theorem 13.2 (p. 90) |[...]| It remains to prove
why this spanning tree is in fact minimal. Assume that e is not of minimal
weight, i.e. there exists an edge f with lower weight. Thus, f would have
been handled by the algorithm before e (line 5). Since S is a connected
component of Er it holds that Ep U {e} used to be acyclic for all previous
iterations of the algorithm. But then, f would have already been added to
Er, contradicting the fact that f is an edge of the cut of S.

Hence, no f with lower weight exists, so e is an edge of minimal weight
in the cut (S,V '\ S), and by Theorem 13.1, the spanning tree augmented by
e is minimal.

Section 14.1, Algorithm 52 (p. 94)

Algorithm 52 Relax
Input: nodes u and v with (u,v) € F
Output: d[v] and p[v] are updated
if d[v] > d[u] + w((u,v)) then
d[v] := dfu] + w((u,v))

plv] :==u

Section 14.2, after Algorithm 53 (p. 95) If we implement @ by an ordinary
array, then the Insert and Peerease-min Decrease-key operations thet take
time O(1) while Extract-min takes O(|V|). [...] If we implement @) with
birery binomial or binary heaps, then ...



