
Script of Lecture 6, Approximation Algorithms
Summer term 2017

Tobias Mömke, Hang Zhou
http://www-cc.cs.uni-saarland.de/course/61/

Written by Hang Zhou

1 Programs

Suppose we want to solve the following linear program:

maximize
n∑
j=1

djxj

subject to
n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n.

In general, the number of constraints m can be exponential in n. However, using an algorithm
called the ellipsoid method, we can solve the LP in time polynomial in n as soon as there is a
polynomial-time separation oracle.

Definition 1. A separation oracle takes as input a supposedly feasible solution x to the linear
program. It either verifies that x is indeed a feasible solution to the LP, or if it is not feasible,
produces a constraint that is violated by x, i.e., with

∑n
j=1 aijxj < bi.

The details of the ellipsoid method are beyond the scope of this course.

2 Prize-Collecting Steiner Tree

Input: Undirected graph G = (V,E) with edge cost ce ≥ 0 for each e ∈ E, a root vertex r ∈ V ,
and a penalty πi ≥ 0 for each i ∈ V .

Output: a tree T that contains the root vertex r so as to minimize the cost of the edges in the
tree plus the penalties of all vertices not in the tree, i.e.,

∑
e∈T ce +

∑
i∈V−V (T) πi, where

V (T) is the set of vertices in the tree T .

Remark 1. The standard Steiner tree problem is a special case of the above problem, where the
penalty of a vertex is either ∞ or 0.

2.1 Integer Program

For each vertex i ∈ V , create a variable yi, such that yi = 1 if i is in the solution tree and 0
otherwise. For each edge e ∈ E, create a variable xe, such that xe = 1 if e is in the solution tree
and 0 otherwise. The goal is to minimize

∑
e∈E cexe +

∑
i∈V πi(1− yi).

Now we need constraints to ensure that the edges in the solution lead to a tree that contains
the root r and each vertex i with yi = 1.

For a non-empty set of vertices S ⊂ V , let δ(S) be the set of edges in the cut defined by S,
i.e., the set of all edges with exactly one endpoint in S. We introduce the constraints∑

e∈δ(S)

xe ≥ yi

1

for each S ⊆ V − r and each i ∈ S. We observe that each constraint must be satisfied in any
feasible solution: if yi = 1 but

∑
e∈δ(S) xe = 0, then r and i belong to different components in

the solution, therefore the solution is not a tree that contains both r and i.
Now we show that these constraints together imply that the solution is a tree that contains

the root r and each vertex i with yi = 1. Consider any solution satisfying these constraints and
consider the graph G′ = (V,E′) where E′ = {e ∈ E : xe = 1}. Pick any i ∈ V − r with yi = 1.
The constraints ensure that for any (r, i) cut S, there must be at least one edge of E′ in δ(S),
so the size of the minimum (r, i) cut in G′ is at least 1. By the max-flow/min-cut theorem, the
size of the maximum (r, i) flow is therefore at least 1. Thus there exists some r-to-i path in G′.

From the above, we know that r is connected to every vertex i with yi = 1 if and only if all
these constraints are satisfied.

We have the following integer program:

minimize
∑
e∈E

cexe +
∑
i∈V

πi(1− yi)

subject to
∑
e∈δ(S)

xe ≥ yi, ∀S ⊆ V − r and ∀i ∈ S,

yr = 1,

yi ∈ {0, 1}, ∀i ∈ V,
xe ∈ {0, 1}, ∀e ∈ E.

2.2 Linear Program Relaxation

We relax the integer program to a linear program by replacing the constraints yi ∈ {0, 1} and
xe ∈ {0, 1} by yi ≥ 0 and xe ≥ 0. We solve the LP using the ellipsoid method. In order to
ensure polynomial running time, we only need to show that there is a polynomial time separation
oracle for the constraints

∑
e∈δ(S) xe ≥ yi. The oracle is as follows: given a solution (x, y), we

construct a network flow problem on the graph G in which the capacity of each edge e is set to
xe. For each vertex i, we check whether the maximum flow from the root r to i is at least yi.
If not, then the minimum cut S separating i from r corresponds to a violated constraint with∑

e∈δ(S) xe < yi. If the flow is at least yi, then by the max-flow/min-cut theorem, for all cuts
S separating i from r, we have

∑
e∈δ(S) xe ≥ yi. Hence, given a solution (x, y), we can find a

violated constraint, if any exists, in polynomial time.

3 Deterministic Rounding for Prize-Collecting Steiner Tree

Definition 2. Let U ⊆ V be a set of vertices. A Steiner tree on U is a tree in G that contains
all vertices of U .

Given an optimal solution (x∗, y∗) to the linear program relaxation in Section 2, we have a
simple deterministic rounding as follows:

a) Let U ⊆ V be the set of vertices i ∈ V such that y∗i ≥ α; (α is a parameter to be defined
later)

b) Use the primal-dual method to find a Steiner tree T on the set of terminals U , and return
T .

Now we analyze the cost of our solution tree T . The cost contains two parts: the total edge
costs

∑
e∈T ce and the total penalties

∑
i∈V−V (T) πi. For the first part, we have:

2

Lemma 1. ∑
e∈T

ce ≤
2

α

∑
e∈E

cex
∗
e.

The proof is left as an exercise.
For the second part, we have:

Lemma 2. ∑
i∈V−V (T)

πi ≤
1

1− α
∑
i∈V

πi(1− y∗i).

The proof is simple: every vertex i ∈ V − V (T) must have y∗i < α, therefore,
1−y∗i
1−α > 1.

From the above two lemmas, we have:

Theorem 1. ∑
e∈T

ce +
∑

i∈V−V (T)

πi ≤
2

α

∑
e∈E

cex
∗
e +

1

1− α
∑
i∈V

πi(1− y∗i).

By setting α = 2
3 in the above theorem, we obtain:

Corollary 1. We have a polynomial time 3-approximation algorithm for the prize-collecting
Steiner tree problem.

4 Randomized Rounding for Prize-Collecting Steiner Tree

The only difference from the deterministic algorithm is that the parameter α is not fixed, but
taken uniformly at random from the range [β, 1] for some β > 0 that we specify later.

Lemma 3.

E

[∑
e∈T

ce

]
≤
(

2

1− β
ln

1

β

)∑
e∈E

cex
∗
e.

Proof.

E

[∑
e∈T

ce

]
≤ E

[
2

α

∑
e∈E

cex
∗
e

]
(by Lemma 1)

= E

[
2

α

]∑
e∈E

cex
∗
e

=

(
1

1− β

∫ 1

β

2

x
dx

)∑
e∈E

cex
∗
e

=

[
2

1− β
lnx

]1
β

·
∑
e∈E

cex
∗
e

=

(
2

1− β
ln

1

β

)
·
∑
e∈E

cex
∗
e

Lemma 4.

E

 ∑
i∈V−V (T)

πi

 ≤ 1

1− β
∑
i∈V

πi(1− y∗i).

3

The proof follows from Lemma 2 and the fact that α ≥ β.
From the above two lemmas, we have:

Theorem 2.

E

∑
e∈T

ce +
∑

i∈V−V (T)

πi

 ≤ (2

1− β
ln

1

β

)∑
e∈E

cex
∗
e +

1

1− β
∑
i∈V

πi(1− y∗i).

Corollary 2. By setting β = e−1/2, we obtain a polynomial time 1
1−e−1/2 -approximation algo-

rithm for the prize-collecting Steiner tree problem, where 1
1−e−1/2 ≈ 2.54.

The derandomization of this algorithm is left as an exercise.

4

