
Probabilistically

checkable proofs

and expander graphs

Markus Bläser
Universität des Saarlandes

Draft—June 15, 2012 and forever

2

1 Complexity of optimization prob-
lems

1.1 Optimization problems

The study of the complexity of solving optimization problems is an impor-
tant practical aspect of complexity theory. A good textbook on this topic is
the one by Ausiello et al. [ACG+99]. The book by Vazirani [Vaz01] is also
recommend, but its focus is on the algorithmic side.

Definition 1.1. An optimization problem P is a 4-tuple (IP , SP ,mP , goalP)
where

1. IP ⊆ {0, 1}∗ is the set of valid instances of P ,

2. SP is a function that assigns to each valid instance x the set of feasible
solutions SP (x) of x, which is a subset of {0, 1}∗.1

3. mP : {(x, y) | x ∈ IP and y ∈ SP (x)} → N+ is the objective function
or measure function. mP (x, y) is the objective value of the feasible
solution y (with respect to x).

4. goalP ∈ {min,max} specifies the type of the optimization problem.
Either it is a minimization or a maximization problem.

When the context is clear, we will drop the subscript P . Formally,
an optimization problem is defined over the alphabet {0, 1}. But as usual,
when we talk about concrete problems, we want to talk about graphs, nodes,
weights, etc. In this case, we tacitly assume that we can always find suitable
encodings of the objects we talk about.

Given an instance x of the optimization problem P , we denote by S∗P (x)
the set of all optimal solutions, that is, the set of all y ∈ SP (x) such that

mP (x, y) = goal{mP (x, z) | z ∈ SP (x)}.

(Note that the set of optimal solutions could be empty, since the maximum
need not exist. The minimum always exists, since we mP only attains val-
ues in N+. In the following we will assume that there are always optimal

1Some authors also assume that for all x ∈ IP , SP (x) 6= ∅. In this case the class NPO
defined in the next section would be equal to the class exp-APX (defined somewhere else).

3

4 1. Complexity of optimization problems

solutions provided that SP (x) 6= ∅.) The objective value of any y ∈ S∗(x) is
denoted by OPTP (x).2

Given an optimization problem P , there are (at least) three things one
could do given a valid instance x:

1. compute an optimal solution y ∈ S∗(x) (construction problem).

2. compute OPT(x) (evaluation problem)

3. given an additional bound B, decide whether OPT(x) ≥ B (if goal =
max) or whether OPT(x) ≤ B (if goal = min) (decision problem).

The first task seems to be the most natural one. Its precise formalization
is however a subtle task. One could compute the function F : I→ P({0, 1}∗)
mapping each x to its set of optimal solutions S∗(x). However S∗(x) could
be very large (or even infinite). Moreover, one is almost always content with
only one optimal solution. A cut of F is any function f : I → {0, 1}∗ that
maps every x to some y ∈ S∗(x). We say that we solve the construction
problem associated with P if there is a cut of F that we can compute effi-
ciently.3 It turns out to be very useful to call such a cut again P and assume
that positive statements containing P are implicitly ∃-quantified and nega-
tive statements are ∀-quantified. (Do not worry too much now, everything
will become clear.)

The second task is easy to model. We want to compute the function
x 7→ OPT(x). We denote this function by Peval.

The third task can be modelled as a decision problem. Let

Pdec =

{
{〈x,bin(B)〉 | OPT(x) ≥ B} if goal = max

{〈x,bin(B)〉 | OPT(x) ≤ B} if goal = min

Our task is now to decide membership in Pdec.

1.2 PO and NPO

We now define optimization analogs of P and NP.

Definition 1.2. NPO is the class of all optimization problems P = (I, S,m, goal)
such that

2The name m∗P (x) would be more consequent, but OPTP (X) is so intuitive and con-
venient.

3Note that not every cut can be computable, even for very simple optimization problems
like computing minimum spanning trees and even on very simple instances. Consider a
complete graph Kn, all edges with weight one. Then every spanning tree is optimal. But
a cut that maps Kn to a line if the nth Turing machine halts on the empty word and to
a star otherwise is certainly not computable.

1.3. Example: TSP 5

1. I ∈ P, i.e., we can decide in polynomial time whether a given x is a
valid instance,

2. there is a polynomial p such that for all x ∈ I and y ∈ S(x), |y| ≤
p(|x|), and for all y with |y| ≤ p(|x|), we can decide y ∈ S(x) in time
polynomial in |x|,

3. m is computable in polynomial time.

Definition 1.3. PO is the class of all optimization problems P ∈ NPO
such that the construction problem P is deterministically polynomial time
computable. (Recall that this means that there is a cut that is polynomial
time computable).

We will see the relation of PO and NPO to P and NP in Section 1.5.
Even though it is not explicit in Definition 1.2, NPO is a nondeterministic
complexity class.

Theorem 1.4. For each P ∈ NPO, Pdec ∈ NP.

Proof. Let p be the polynomial in the definition of NPO. The following
nondeterministic Turing machine M decides Pdec in polynomial time:

Input: instance x ∈ I and bound B

1. M guesses a string y with |y| ≤ p(|x|).

2. M deterministically tests whether y ∈ S(x).
If not, M rejects.

3. If y is, then M computes m(x, y) and tests whether m(x, y) ≤ B
(minimization problem) or m(x, y) ≥ B (maximization problem).

4. If the test is positive, then M accepts, otherwise, M rejects.

It is easy to see that M indeed decides Pdec and that its running time is
polynomial.

1.3 Example: TSP

Problem 1.5 (TSP, ∆-TSP). The Traveling Salesperson Problem (TSP) is
defined as follows: Given a complete loopless (undirected) graph G = (V,E)
and a weight function w : E → N+ assigning each edge a positive weight,
find a Hamiltonian tour of minimum weight. If in addition w fulfills the
triangle inequality, i.e.,

w({u, v}) ≤ w({u, x}) + w({x, v}) for all nodes u, x, v,

then we speak of the Metric Traveling Salesperson Problem (∆-TSP).

6 1. Complexity of optimization problems

In the example of the Traveling Salesperson Problem TSP, we have the
following:

• The set of all valid instances is the set (of suitable encodings) of all
edge-weighted complete loopless graphs G. In the special case ∆-TSP,
the edge weights should also fulfill the triangle inequality (which can
be easily checked).

• Given an instance x, a feasible solution is any Hamiltonian tour of G,
i.e., a permutation of the vertices of G. (Note that for TSP, the set of
feasible solutions only depends on the number of nodes of G.)

• The objective value of a solution y of an instance x is the sum of the
edges used in the tour specified by y. (This can be interpreted as the
length of the tour.)

• Finally, TSP and ∆-TSP are minimization problems.

It is easy to verify, that TSP ∈ NPO. However it is very unlikely that it
is in PO. Even finding a very rough approximate solution seems to be very
hard.

Exercise 1.1. Assume that there is a polynomial time algorithm that given
an instance x of TSP, returns a Hamiltonian tour whose weight is at most
2p(n) · OPT for some polynomial p, where n is the number of nodes of the
given graph. Then P = NP. (Hint: Show that under this assumption, one
can decide whether a graph has a Hamiltonian circuit.)

1.4 Construction, evaluation, and decision

Let us investigate the relation between the construction, evaluation, and
decision problem associated with a problem P ∈ NPO.

Theorem 1.6. Let P ∈ NPO. Then

1. Pdec ≤T
P Peval and Peval ≤T

P Pdec.

2. Peval ≤T
P P . (Since this is a negative statement about P , it means that

Peval ≤T
P P holds for all cuts P .)

Proof. We start with the first statement: Pdec ≤T
P Peval is seen easily:

On input 〈x,bin(B)〉, we can compute OPT(x) using the oracle Peval, and
compare it with B.

Peval ≤T
P Pdec is a little trickier: Since m is polynomial time computable,

OPT(x) ≤ 2q(|x|) for some polynomial q. Using binary search, we can find
OPT(x) with q(n) oracle queries.

1.5. NP-hard optimization problems 7

For the second statement, note that when we have an optimum solution,
then we can compute OPT(x).

If Pdec is NP-complete, then the optimization problem is not harder than
the decision problem.

Theorem 1.7. Let P ∈ NPO such that Pdec is NP-complete. Then P ≤T
P

Pdec.

Proof. Assume that P is a maximization problem, the minimization
case is symmetric. Let q be a polynomial such for every x ∈ I and y ∈ S(x),
|y| ≤ q(|x|) and m(x, y) is bounded by 2q(|x|).

For given x, fix some polynomial time computable total order on the
set {0, 1}≤q(|x|). For y ∈ {0, 1}≤q(|x|), let λ(y) be the rank that y has with
respect to this order.

We derive a new problem P̂ from P by defining a new objective function.
The objective function of P̂ is given by

m̂(x, y) = 2q(n)+1 m(x, y) + λ(y).

Note that the first summand is always bigger than 2q(n)+1 > λ(y). This
implies that for all x and y1, y2 ∈ S(x), m̂(x, y1) 6= m̂(x, y2). Furthermore,

if m̂(x, y1) ≥ m̂(x, y2) then m(x, y1) ≥ m(x, y2). Thus if y ∈ Ŝ∗(x) then

y ∈ S∗(x), too. (Here Ŝ∗(x) is the set of optimum solutions of x as an
instance of P̂ .)

An optimal solution y of Ŝ∗(x) can be easily derived from ˆOPT(x): We
compute the remainder of the division ˆOPT(x) with 2q(n)+1. This remainder
is λ(y) from which we can obtain y. Thus P ≤T

P P̂ ≤T
P P̂eval.

By Theorem 1.6, P̂eval ≤T
P P̂dec. Since P̂dec ∈ NP and Pdec is NP-complete

by assumption, P̂dec ≤P Pdec. Using transitivity, we get P ≤T
P Pdec.

1.5 NP-hard optimization problems

Definition 1.8. An optimization problem P is NP-hard if for all L ∈ NP,
L ≤T

P P .

Theorem 1.9. If P is NP-hard and P ∈ PO, then P = NP.

Exercise 1.2. Prove Theorem 1.9.

Theorem 1.10. Let P ∈ NPO. If Pdec is NP-hard, then P is NP-hard.

Proof. Since Pdec is NP-hard, L ≤P Pdec for all L ∈ NP. Since many-one
reducibility is a special case of Turing reducibility and ≤T

P is transitive, we
get L ≤T

P P .

Some authors prefer to call an optimization problem NP-hard if Pdec

is NP-hard. Theorem 1.10 states that this definition is potentially more
restrictive than our definition.

8 1. Complexity of optimization problems

Corollary 1.11. If P 6= NP, then PO 6= NPO

Proof. There is a problem P in NPO such that Pdec is NP-hard, for in-
stance ∆-TSP. If P would belong to PO, then also Pdec ∈ P by Theorem 1.7,
a contradiction.

2 Approximation algorithms and
approximation classes

In the most general sense, an approximation algorithm is an algorithm that
given a valid instance x is able to compute some feasible solution.

Definition 2.1. A deterministic Turing machine A is an approximation
algorithm for an optimization problem P = (I,S,m, goal) if

1. the running time A is polynomial,

2. A(x) ∈ S(x) for all x ∈ I.

Of course, there are good and not so good approximation algorithms
and we develop a framework to measure the quality or approximation per-
formance of such an algorithm.

Definition 2.2. 1. Let P be an optimization problem, x ∈ I, and y ∈
S(x). The performance ratio of y with respect to x is defined as

PR(x, y) = max

{
m(x, y)

OPT(x)
,
OPT(x)

m(x, y)

}
. 1

2. Let α : N→ Q. An approximation algorithm A is an α-approximation
algorithm, if for all x ∈ I,

PR(x,A(x)) ≤ α(|x|).

The definition of PR(x, y) basically means that in the case of a mini-
mization problem, we measure how many times the objective value of the
computed solution exceeds the objective value of an optimum solution. In
the case of a maximization problem, we do the same but we take the recip-
rocal. This may seem strange at a first glance but it has the advantage that
we can treat minimization and maximization problems in a uniform way.
(Be aware though that some authors use m(x, y)/OPT(x) to measure the
approximation performance in case of maximization problems. But this is
merely a question of faith.)

Definition 2.3. 1. Let F be some set of functions N→ Q. An optimiza-
tion problem P ∈ NPO is contained in the class F -APX if there is an
f ∈ F such that there exists an f -approximation algorithm for P .

1Note that m only attains positive values. Thus, the quotient is always defined.

9

10 2. Approximation algorithms and approximation classes

2. APX := O(1)-APX.

(I hope that the elegant definition above clarifies why PR was defined
for maximization problems as it is.) There is a well-known 2-approximation
algorithm for ∆-TSP that is based on minimum spanning trees, thus

∆-TSP ∈ APX.

Even stronger is the concept of a polynomial time approximation scheme.

Definition 2.4. A deterministic Turing machine A is a polynomial time ap-
proximation scheme (PTAS) for an optimization problem P = (I, S,m, goal)
if on input 〈x, ε〉 for all small enough ε > 0,

1. the running time of A is polynomial in the size of x (but not necessarily
in ε), and

2. A(x, ε) is a feasible solution for x with performance ratio 1 + ε.

We do not have to distinguish between minimization and maximization
problems. If a solution y has performance ratio 1 + ε in the case of a
maximization problem, then we know that m(x, y) ≥ 1

1+ε OPT(x). We have

1

1 + ε
= 1− ε

1 + ε
≥ 1− ε,

which is exactly what we want.

Definition 2.5. PTAS is the class of all problems in NPO that have a PTAS.

We have
PO ⊆ PTAS ⊆ APX

If P 6= NP, then both inclusions are strict. Under this assumption, a problem
in APX\PTAS is Maximum Satisfiability (see the next chapters for a proof),
a problem in PTAS \ PO is Knapsack (solve the next exercise for a proof).

Problem 2.6. Knapsack is the following problem:
Instances: rational numbers w1, . . . , wn (weights), p1, . . . , pn (profits),

and B (capacity bound) such that wν ≤ B for all ν.

Solutions: I ⊆ {1, . . . , n} such that
∑
i∈I

wi ≤ B

Measure:
∑
i∈I

pi, the total profit of the items packed

Goal: max

We may assume w.l.o.g. that all the pν are natural numbers. If this is not
the case, assume that pν = xν/yν with gcd(xν , yν) = 1. Let Y = y1 · · · yn.
We now replace pν by pν · Y ∈ N. Any knapsack that maximizes the old
objective function also maximizes the new one. The size of the instance is
only polynomially larger. (Note that we encode all inputs in binary.)

2.1. Gap problems 11

Exercise 2.1. 1. Show that there is an algorithm for Knapsack with run-
ning time polynomial in n and P := max1≤ν≤n pν . (Compute by dy-
namic programming sets of indices I(i, p) such that

• ν ≤ i for all ν ∈ I(i, p),

• the sum of the pν with ν ∈ I(i, p) is exactly p, and

• the sum of all wν with ν ∈ I(i, p) is minimum among all such set
of indices.)

2. Show that we get a PTAS out of this pseudopolynomial algorithm as
follows:

• Let S = εP/n and p̂ν = bpν/Sc for 1 ≤ ν ≤ n.

• Find an optimum solution for the instance w1, . . . , wn, p̂1, . . . , p̂n,
and B.

Remark 2.7. The running of the PTAS constructed in the previous exercise
is also polynomial in 1

ε . This is called an fully polynomial time approxima-
tion scheme (FPTAS). The corresponding complexity class is denoted by
FPTAS.

Exercise 2.2. A super fully polynomial time approximation scheme is a
PTAS whose running time is polynomial in log 1

ε . Show that if Knapsack

has a super fully polynomial time approximation scheme, then P = NP.

2.1 Gap problems

A promise problem is a tuple of languages Q = (L,U) with L ⊆ U . (Think
of U as the universe of admissible inputs.) A Turing machine decides a
promise problem, if for all x ∈ U , M(x) = 1 if x ∈ L and M(x) = 0 if
x ∈ U \ L. On inputs not in U , M may output whatever it wants. Since
we do not have to care about the behaviour of M on inputs not in U , we
can also think that we get an input with the additional promise that it is
in U . The elements in L are often called yes-instances, the elements in
U \ L are called no-instances, and the elements not in U are called don’t
care-instances. ”Ordinary” decision problems are a special case of promise
problems, we just set U = {0, 1}∗.

Many-one-reductions can be extended to promise problems in a natural
way. Let Q = (L,U) and Q′ = (L′, U ′) be two promise problems. Q is
polynomial time many-one reducible to Q′ if there is a polynomial time
computable function f such that

x ∈ L =⇒ f(x) ∈ L′ and

x ∈ U \ L =⇒ f(x) ∈ U ′ \ L′

12 2. Approximation algorithms and approximation classes

That means that yes-instances are mapped to yes-instances and no-instances
are mapped to no-instances. A promise problem Q is C-hard for some class
C of decision or promise problems, if every problem in C is polynomial time
many-one reducible to Q.

Definition 2.8. Let P = (IP , SP ,mP , goal) be an optimization problem and
a < b. gap(a, b)-P is the promise problem (L,U) where

U = {x | OPT(x) ≤ a or OPT(x) ≥ b}

and

L =

{
{x | OPT(x) ≥ b} if goal = max

{x | OPT(x) ≤ a} if goal = min

That is, we get an instance x and the promise that the objective value
is at most a or at least b and we shall decide which of these two options is
the case. There is a difference in the definition of L for maximization and
minimization problems because the yes-instances shall be the inputs with
solutions that have a ”good” objective value. We will also allow a and b two
be functions N→ N that depend on |x|.

Theorem 2.9. If gap(a, b)-P is NP-hard for polynomial time computable
functions a and b with input given in unary and output given in binary,
then there is no α-approximation algorithm for P with α < b/a, unless
P = NP.

Proof. Suppose on the contrary that such an algorithm A exists. We
only show the case goalP = min, the other case is treated similarly. Since
gap(a, b)-P is NP-hard, there is a polynomial time many-one reduction f
from SAT to gap(a, b)-P . We design a polynomial time algorithm for SAT as
follows:

Input: formula φ in CNF

1. Compute x = f(φ) and y = A(x).

2. If mP (x, y) < b(|x|), then accept, else reject.

Let us see why this algorithm is correct. If φ ∈ SAT, then OPTP (x) ≤
a(x) and

mP (x, y) ≤ α(|x|) ·OPTP (x) < b(|x|).

If φ /∈ SAT, then OPTP (x) ≥ b(|x|) and

mP (x, y) ≥ OPTP (x) ≥ b(|x|).

Thus the algorithm works correctly. It is obviously polynomial time. There-
fore, P = NP.

2.2. Approximation preserving reductions and hardness 13

In Exercise 1.1, we have seen that there is no polynomial p such that
TSP can be approximated within 2p(n) where n is the number of nodes of
the given graph. However, note that n is not the size of the instance but
O(p(n)n2). Thus gap(n, 2n

1−ε
)-TSP is NP-hard

Since TSP ∈ NPO, we get the following result.

Theorem 2.10. If P 6= NP, then APX (NPO.

We can always approximate TSP within 2O(|x|) where x is the given in-
stance, since with |x| symbols we can encode integers up to 2O(|x|). Thus
TSP is contained in the class exp-APX, as defined below.

Definition 2.11. exp-APX = {2p | p is a polynomial }-APX.

Thus the theorem above can be strengthened to the following statement.

Theorem 2.12. If P 6= NP, then APX (exp-APX.

Exercise 2.3. What is the difference between exp-APX and NPO?

2.2 Approximation preserving reductions and hardness

Let P and P ′ be two optimization problems. If P is reducible to P ′ (in
some sense to be defined), then we would like to turn approximate solution
of P ′ back into approximate solutions of P . That is, we do not only need a
function that maps instances of P to instances of P ′, we also need to transfer
solutions of P ′ back to solutions of P like we did for #P functions. Many of
the reductions between NP-complete problems give also this second function
for free. But what they usually do not do is that they preserve approximation
factors.

Problem 2.13. Maximum Clique (Clique) is the following problem:
Instances: graph G = (V,E)
Solutions: all cliques of G, i.e., all C ⊆ V such that for all u, v ∈ C

with u 6= v, {u, v} ∈ E
Measure: #C, the size of the clique
Goal: max

Problem 2.14. Vertex Cover (VC) is the following problem:
Instances: graph G = (V,E)
Solutions: all subsets C of V such that for each {u, v} ∈ E, C∩{u, v} 6=

∅
Measure: #C
Goal: min

Exercise 2.4. There is an easy reduction Cliquedec ≤P VCdec that simply
maps G to its complement.

14 2. Approximation algorithms and approximation classes

1. How does one get a clique of G from a vertex cover of the complement?

2. Assume we have a vertex cover that is a 2-approximation. What ap-
proximation do we get for Clique from this?

Definition 2.15. Let P, P ′ ∈ NPO. P is reducible to P ′ by an approxima-
tion preserving reduction (short: P is AP-reducible to P ′ or even shorter,
P ≤AP P ′) if there are two functions f, g : {0, 1}∗ × Q+ → {0, 1}∗ and an
α ≥ 1 such that

1. for all x ∈ IP and β > 1, f(x, β) ∈ IP ′,

2. for all x ∈ IP and β > 1, if SP (x) 6= ∅ then SP ′(f(x, β)) 6= ∅,

3. for all x ∈ IP , y ∈ SP ′(f(x, β)), and β > 1,

g(x, y, β) ∈ SP (x),

4. f and g are deterministically polynomial time computable for fixed
β > 1,

5. for all x ∈ IP and all y ∈ SP ′(f(x, β)), if y is a β-approximate solution
of f(x, β), then g(x, y, β) is an (1 +α(β− 1))-approximate solution of
x.

(f, g, α) is called an AP-reduction from P to P ′.2

Lemma 2.16. If P ≤AP P
′ and P ′ ∈ APX, then P ∈ APX.

Proof. Let (f, g, α) be an AP-reduction from P to P ′ and let A′ be a β-
approximation algorithm for P ′. Given x ∈ IP , A(x) := g(x,A′(f(x, β)), β)
is a (1+α(β−1))-approximate solution for x. This follows directly from the
definition of AP-reduction. Furthermore, A is polynomial time computable.

Exercise 2.5. Let P ≤AP P
′. Show that if P ′ ∈ PTAS, so is P .

The reduction in Exercise 2.4 is not an AP-reduction. This has a deeper
reason. While there is a 2-approximation algorithm for VC, Clique is much
harder to approximate. H̊astad [H̊as99] shows that any approximation algo-
rithm with performance ratio n1−ε0 for some ε0 > 0 would imply ZPP = NP
(which is almost as unlikely as P = NP).

2The functions f, g depend on the quality β of the solution y. I am only aware of one
example where this dependence seems to be necessary, so usually, f and g will not depend
on β.

2.2. Approximation preserving reductions and hardness 15

Problem 2.17. Maximum Independent Set (IS) is the following problem:
Instances: graph G = (V,E)
Solutions: independent sets of G, i.e., all S ⊆ V such that for all u, v ∈

S with u 6= v, {u, v} /∈ E
Measure: #S
Goal: max

Exercise 2.6. Essentially the same idea as in Exercise 2.4 gives a reduction
from Clique to IS. Show that this is an AP-reduction.

Definition 2.18. Let C ⊆ NPO. A problem P is C-hard (under AP-
reductions) if for all P ′ ∈ C, P ′ ≤AP P . P is C-complete if it is in C
and C-hard.

Lemma 2.19. ≤AP is transitive.

Proof. Let P ≤AP P
′ and P ′ ≤AP P

′′. Let (f, g, α) and (f ′, g′, α′) be the
corresponding reductions. Let γ = 1 + α′(β − 1) We claim that (F,G, αα′)
is an AP-reduction from P to P ′′ where

F (x, β) = f ′(f(x, γ), β),

G(x, y, β) = g(x, g′(f(x, γ), y, γ), β).

We verify that (F,G, αα′) is indeed an AP-reduction by checking the five
conditions in Definition 2.15:

1. Obvious.

2. Obvious, too.

3. Almost obvious, thus we give a proof. Let x ∈ IP and y ∈ SP ′′(F (x, β)).
We know that g′(f(x, γ), y, β) ∈ SP ′(f(x, γ)), since (f ′, g′, α′) is an
AP-reduction. But then also g(x, g′(f(x, γ), y, γ), β) ∈ SP (x), since
(f, g, α) is an AP-reduction.

4. Obvious.

5. Finally, if y is a β-approximation to f ′(f(x, γ), β), then g′(f(x, γ), y, β)
is a (1+α′(β−1))-approximation to f(x). But then g(x, g′(f(x, γ), y, β), γ)
is a (1 + αα′(β − 1))-approximation to x, as

1 + α(1 + α′(β − 1)− 1) = 1 + αα′(β − 1).

Lemma 2.20. Let C ⊆ NPO. If P ≤AP P
′ and P is C-hard, then P ′ is also

C-hard.

16 2. Approximation algorithms and approximation classes

Proof. Let Q ∈ C be arbitrary. Since P is C-hard, Q ≤AP P . Since ≤AP

is transitive, Q ≤AP P
′.

Thus once we have identified one APX-hard problem, we can prove the
APX-hardness using AP-reductions. A canonical candidate is of course the
following problem:

Problem 2.21 (Max-SAT). The Maximum Satisfiability problem (Max-SAT)
is defined as follows:

Instances: formulas in CNF
Solutions: Boolean assignments to the variables
Measure: the number of clauses satisfied
Goal: max

Proposition 2.22. Max-SAT is APX-hard.

The proof of this proposition above is very deep, we will spend the next
few weeks with it.

Exercise 2.7. Give a simple 2-approximation algorithm for SAT.

2.3 Further exercises

Here in an NPO-complete problem.

Problem 2.23. Maximum Weighted Satisfiability is the following prob-
lem:

Instances: Boolean formula φ with variables x1, . . . , xn having nonneg-
ative weights w1, . . . , wn

Solutions: Boolean assignments α : {x1, . . . , xn} → {0, 1} that satisfy φ
Measure: max{1,

∑n
i=0wiα(xi)}

Goal: max

Exercise 2.8. 1. Show that every maximization problem in NPO is AP-
reducible to Maximum Weighted Satisfiability. (Hint: Construct an
NP-machine that guesses a solution y to input x and computes m(x, y).
Use a variant of the proof of the Cook-Karp-Levin Theorem to produce
an appropriate formula in CNF. Assign only nonzero weights to vari-
ables that contain the bits of m(x, y).)

2. Show that every minimization problem in NPO is AP-reducible to Min-
imum Weighted Satisfiability.

3. Show that Maximum Weighted Satisfiability is AP-reducible to Mini-
mum Weighted Satisfiability and vice versa.

4. Conclude that Maximum (Minimum) Weighted Satisfiability is NPO-
complete

2.3. Further exercises 17

The world of optimization classes

PO ⊆ PTAS ⊆ APX ⊆ exp-APX ⊆ NPO

All of these inclusion are strict, provided that P 6= NP. Under this
assumption, we have for instance

• Knapsack ∈ PTAS \ PO

• TSP ∈ exp-APX \ APX

• Weighted Satisfiability ∈ NPO \ exp-APX.

The goal of the next chapters is to prove that Max-SAT is in
APX \ PTAS provided that P 6= NP.

3 Probabilistically checkable proofs
and inapproximability

3.1 Probabilistically checkable proofs (PCPs)

3.1.1 Probabilistic verifiers

A polynomial time probabilistic verifier is a polynomial time probabilistic
Turing machine that has oracle access to a proof π ∈ {0, 1}∗ in the following
way: The proof π induces a function {0, 1}log(|π|) → {0, 1} by mapping
b ∈ {0, 1}log(|π|) to the bit of π that stands in the position that is encoded by
the binary representation b. By abuse of notation, we will call this function
again π. If the verifier queries a bit outside the range of π, then the answer
will be 0.

A verifier described above may query π several times and each query
may depend on previous queries. Such a behavior is called adaptive. We
need a more restricted kind of verifiers, called nonadaptive: A nonadaptive
verifier gets the proof π again as an oracle, but in a slightly different form:
The verifier can write down several positions of π at one time. If it enters
the query state, it gets the values of all the positions that it queries. But the
verifier may enter the query state only once, i.e., the verifier has to decide
in advance which bits it wants to query.

A nonadaptive probabilistic verifier is called (r(n), q(n))-restricted if it
uses r(n)-bits of randomness and queries q(n) bits of π for all n and all
inputs x of of length n.

Definition 3.1. Let r, q : N → N. A language L belongs to the class
PCP[r, q] if there exists a (r, q)-restricted nonadaptive polynomial time prob-
abilistic verifier such that the following holds:

1. For any x ∈ L, there is a proof π such that

Pr
y

[V π(x, y) = 1] = 1.

2. For any x /∈ L and for all proofs π,

Pr
y

[V π(x, y) = 0] ≥ 1/2.

The probabilities are taken over the the random strings y.

18

3.1. Probabilistically checkable proofs (PCPs) 19

In other words, if x is in L, then there is a proof π that convinces the
verifier regardless of the random string y. If x is not in L, then the verifier
will detect a “wrong” proof with probability at least 1/2, that is, for half of
the random strings.

Since the verifier is r(n)-restricted, there are only 2r(n) (relevant) random
strings. For any fixed random string, the verifiers queries at most q(n) bits
of the proof. Therefore, for an input x of length n, we only have to consider
proofs of length q(n)2r(n), since the verifier cannot query more bits than
that.

3.1.2 A different characterization of NP

Once we have defined the PCP classes, the obvious question is: What is this
good for and how is it related to other classes? While complexity theorists
also like to answer the second part of the question without knowing an
answer to the first part, here the answer to the second part also gives the
answer to the first part.

Let R and Q denote sets of functions N→ N. We generalize the notion
of PCP[r, q] in the obvious way:

PCP[R,Q] =
⋃

r∈R,q∈Q
PCP[r, q].

The characterization of NP by polynomial time verifiers immediately yields
the following result.

Proposition 3.2. NP = PCP[0, poly(n)].

In the theorem above, we do not use the randomness at all. The next
result, the celebrated PCP theorem [ALM+98], shows that allowing a little
bit of randomness reduces the number of queries dramatically.

Theorem 3.3 (PCP Theorem). NP = PCP[O(log n),O(1)].

What does this mean? By allowing a little randomness—note that
O(log n) are barely sufficient to choose O(1) bits of the proof at random—
and a bounded probability of failure, we can check the proof π by just
reading a constant number of bits of π! This is really astonishing.

Exercise 3.1. Show that PCP[O(log n),O(1)] ⊆ NP. (Hint: How many
random strings are there?)

The other direction is way more complicated, we will spend the next few
lectures with its proof. We will not present the original proof by Arora et
al. [ALM+98] but a recent and—at least compared to the first one—elegant
proof by Irit Dinur [Din07].

20 3. PCP and inapproximability

3.2 PCPs and gap problems

The PCP theorem is usually used to prove hardness of approximation results.
Dinur’s proof goes the other way around, we show that the statement of the
PCP theorem is equivalent to the NP-hardness of some gap problem

Theorem 3.4. The following two statements are equivalent:

1. NP = PCP[O(log n),O(1)].

2. There is an ε > 0 such that gap(1− ε, 1)-Max-3-SAT is NP-hard.1

Proof. “=⇒”: Let L be any NP-complete language. By assumption,
there is an (r(n), q)-restricted nonadaptive polynomial time probabilistic
verifier V with r(n) = O(log n) and q = O(1). We can assume that V
always queries exactly q bits.

Let x be an input for L of length n. We will construct a formula in
3-CNF φ in polynomial time such that if x ∈ L, then φ is satisfiable and if
x /∈ L, then every assignment can satisfy at most a fraction of 1 − ε of the
clauses for some fixed ε > 0.

For each position i in the proof, there will be one Boolean variable vi. If
vi is set to 1, this will mean that the corresponding ith bit is 1; if it is set
to zero, then this bit is 0. Since we can restrict ourselves to proofs of length
≤ q · 2r(n) = poly(n), the number of these variables is polynomial.

For a random string y, let i(y, 1), . . . , i(y, q) denote the positions of the
bits that the verifier will query. (Note that the verifier is nonadaptive,
hence these position can only depend on y.) Let Ay be the set of all q-
tuples (b1, . . . , bq) ∈ {0, 1}q such that if the i(y, j)th bit of the proof is bj for
1 ≤ j ≤ q, then the verifier will reject (with random string y).

For each tuple (b1, . . . , bq) ∈ Ay, we construct a clause of q literals, that
is true iff the variables vi(y,1), . . . , vi(y,q) do not take the value b1, . . . , bq, i.e,

v1−b1
i(y,1) ∨ · · · ∨ v

1−bq
i(y,q). (Here, for a Boolean variable v, v1 = v and v0 = v̄.)

The formula φ has ≤ |Ay|2r(n) ≤ 2q+r(n) = poly(n) many clauses. These
clauses have length q. Like in the reduction of SAT to 3SAT, for each such
clause c, there are q − 2 clauses c1, . . . , cq−2 of length three in the variables
of c and some additional variables such that any assignment that satisfies c
can be extended to an assignment that satisfies c1, . . . , cq−2 and conversely,
the restriction of any assignment that satisfies c1, . . . , cq−2 satisfies c, too.
This replacement can be computed in polynomial time.

The formula φ can be computed in polynomial time: We enumerate all
(polynomially many) random strings. For each such string y, we simulate

1Instead of stating the absolute bounds (1 − ε)m and m, where m is the number of
clauses of the given instance, we just state the relative bounds 1 − ε and 1. This is very
convenient here, since there is an easy upper bound of the objective value, namely m.

3.2. PCPs and gap problems 21

the verifier V to find out which bits he will query. Then we can give him all
the possible answers to the bits he queried to compute the sets Ay.

If x ∈ L, then there will be a proof π such that V π(x, y) = 1 for every
random string y. Therefore, if we set the variables of φ as given by this
proof π, then φ will be satisfied.

If x /∈ L, then for any proof π, there are at least 2r(n)/2 random strings
y for which V π(x, y) = 0. For each such y, one clause corresponding to a
tuple in Ay will not be satisfied. In other words, for any assignment, 2r(n)/2
clauses will not be satisfied. The total number of clauses is bounded by
(q − 2)2q+r(n). The fraction of unsatisfied clauses therefore is

≥ 2r(n)/2

(q − 2)2q+r(n)
≥ 2−q−1/(q − 2),

which is a constant.
“⇐=”: By Exercise 3.1, it suffices to show that NP ⊆ PCP[O(log n),O(1)].

Let L ∈ NP. By assumption, there is a polynomial time computable function
f such that

x ∈ L =⇒ f(x) is a satisfiable formula in 3-CNF,

x /∈ L =⇒ f(x) is a formula in 3-CNF such that every assignment

satisfies at most (1− ε) of the clauses.

We construct a probabilistic verifier as follows:

Input: input x, proof π

1. Compute f(x).

2. Randomly select a clause c from f(x).

3. Interpret π as an assignment to f(x) and read the bits that belong to
the variables in c.

4. Accept if the selected clause c is satisfied. Reject otherwise.

Let m be the number of clauses of f(x). To select a clause at random,
the verifier reads logm random bits and interprets it as a number. If it
“selects” a nonexisting clause, then it will accept. So we can think of m
being a power of two at the expense of replacing ε by ε/2.

Now assume x ∈ L. Then f(x) is satisfiable and therefore, there is a proof
that will make the verifier always accept, namely a satisfying assignment of
f(x). If x /∈ L, then no assignment will satisfy more than 1−ε of the clauses.
In particular, the probability that the verifier selects a clause that is satisfied
is at most 1− ε. By repeating this process for a constant number of times,
we can bring the error probability down to 1/2.

Since f(x) is in 3-CNF, the verifier needs O(logm) = O(log |x|) random
bits, and it only queries O(1) bits of the proof.

22 3. PCP and inapproximability

Exercise 3.2. Let c be a clause of length q. Construct clauses c1, . . . , cq−2 of
length three in the variables of c and some additional variables such that any
assignment that satisfies c can be extended to an assignment that satisfies
c1, . . . , cq−2 and conversely, the restriction of any assignment that satisfies
c1, . . . , cq−2 satisfies c, too.

Note that we get an explicit value for ε in terms of q. Thus in order to
get good nonapproximability results from the PCP theorem, we want q to
be as small as possible.

3.3 Further exercises

Exercise 3.3. Show that PCP[O(log n), 2] = P.

It can be shown—tadah!—that three queries are enough to capture NP;
however, it is not possible to get error probability 1/2 and one-sided error,
see [GLST98] for further discussions.

A Max-3-SAT is APX-hard

In this chapter, we will strengthen the result of the previous one by showing
that Max-3-SAT is in fact APX-hard. We do this in several steps. First, we
show that any maximization problem in APX is AP-reducible to Max-3-SAT.
Second, we show that for every minimization problem P , there is a maxi-
mization problem P ′ such that P ≤AP P

′. This will conclude the proof.
Our proof of the PCP-Theorem will also yield the following variant,

which we will use in the following.

Theorem A.1 (PCP-Theorem’). There are ε > 0 and polynomial time
computable functions fPCP and gPCP such that for every formula ψ in 3-
CNF:

1. fPCP(ψ) is a formula in 3-CNF,

2. if ψ is satisfiable, so is fPCP(ψ),

3. if ψ is not satisfiable, then any assignment can satisfy at most a frac-
tion of 1− ε of the clauses in fPCP(ψ),

4. if a is an assignment for fPCP(ψ) that satisfies more than a fraction
of 1− ε of the clauses, then gPCP(ψ, a) is an assignment that satisfies
ψ.

Theorem A.2. Let P = (IP , SP ,mP ,max) be a maximization problem in
APX. Then P ≤AP Max-3-SAT.

Proof. Our goal is to construct an AP reduction (f, g, α) from P to
Max-3-SAT. Let fPCP and gPCP be the functions constructed in Theorem A.1
and let ε be the corresponding constant. Let A be a b-approximation algo-
rithm for P . Let

α = 2(b log b+ b− 1)
1 + ε

ε
.

Our goal is to define the functions f and g given β. Let r = 1+α(β−1).
If r < b, then

β =
r − 1

α
+ 1 =

ε

2(1 + ε)
· r − 1

b log b+ b− 1
+ 1 <

ε

2k(1 + ε)
+ 1 (A.1)

where k = dlogr be. The last inequality follows from

k ≤ log b

log r
+ 1 ≤ r log b

r − 1
+ 1 ≤ b log b+ b− 1

r − 1
.

23

24 A. Max-3-SAT is APX-hard

Let µ(x) = mP (x,A(x)). Since A is a b-approximation algorithm, µ(x) ≤
OPTP (x) ≤ bµ(x).

The following Turing machine computes f :

Input: x ∈ {0, 1}∗, β ∈ Q+

1. Construct formulas φx,i in 3-CNF that are true if OPTP (x) ≥ i.
(These formulas φx,i can be uniformly constructed in polynomial time,
cf. the proof of Cook’s theorem.)

2. Let ψx,κ = fPCP(φx,µ(x)rκ), 1 ≤ κ ≤ k.
By padding with dummy clauses, we may assume that all the ψx,κ
have the same number of clauses c.

3. Return ψx =
∨k
κ=1 ψx,κ.

The function g is computed as follows:

Input: x ∈ {0, 1}∗, assignment a with performance ratio β

1. If b ≤ 1 + α(β − 1), then return A(x).1

2. Else let κ0 be the largest κ such that gPCP(φx,µ(x)rκ,a) satisfies φx,µ(x)rκ .
(We restrict a to the variables of φx,µ(x)rκ .)

3. This satisfying assignment corresponds to a feasible solution y with
mP (x, y) ≥ µ(x)rκ0 .
Return y.

If b ≤ 1 + α(β − 1), then we return A(x). This is a b-approximation by
assumption. Since b ≤ 1 + α(β − 1), we are done.

Therefore, assume that b > 1 + α(β − 1). We have

OPTMax-3-SAT(ψx)−mMax-3-SAT(ψx, a) ≤ OPTMax-3-SAT(ψx)
β − 1

β
≤ kcβ − 1

β
.

Let βκ denote the performance ratio of a with respect to ψx,κ, i.e., we view
a as an assignment of ψx,κ. We have

OPTMax-3-SAT(ψx)−mMax-3-SAT(ψx, a) ≥ OPTMax-3-SAT(ψx,κ)−mMax-3-SAT(ψx,κ, a)

= OPTMax-3-SAT(ψx,κ)
βκ − 1

βκ

≥ c

2
· βκ − 1

βκ
.

1Here is the promised dependence on β.

25

The last inequality follows from the fact that any formula in CNF has an
assignment that satisfies at least half of the clauses. This yields

c

2
· βκ − 1

βκ
≤ kcβ − 1

β

and finally

βκ ≤
1

1− 2k(β − 1)/β
.

Exploiting (A.1), we get, after some routine calculations,

βκ ≤ 1 + ε.

This means that a satisfies at least a fraction of 1/βκ ≥ 1− ε of the clauses
of ψx,κ. Then gPCP(a) satisfies φx,µ(x)rκ if and only if φx,µ(x)rκ is satisfiable.
This is equivalent to the fact that OPTP (x) ≥ µ(x)rκ. By the definition of
κ0,

µ(x)rκ0+1 > OPTP (x) ≥ µ(x)rκ0 .

This means that mP (x, y) ≥ µ(x)rκ0 . But then y is an r-approximate solu-
tion. Then we are done, since r = 1 + α(β − 1) by definition.

Theorem A.3. For every minimization problem P ∈ APX, there is a max-
imization problem P ′ ∈ APX such that P ≤AP P

′.

Proof. LetA be a b-approximation algorithm for P . Let µ(x) = mP (x,A(x))
for all x ∈ IP . Then µ(x) ≤ bOPTP (x). P ′ has the same instances and fea-
sible solutions as P . The objective function is however different:

mP ′(x, y) =

{
(k + 1)µ(x)− kmP (x, y) if mP (x, y) ≤ µ(x)

µ(x) otherwise

where k = dbe. We have µ(x) ≤ OPTP ′(x) ≤ (k+ 1)µ(x). This means, that
A is a (k + 1)-approximation algorithm for P ′. Hence, P ′ ∈ APX.

The AP reduction (f, g, α) from P ′ to P is defined as follows: f(x, β) = x
for all x ∈ IP . (Note that we do not need any dependence on β here). Next,
we set

g(x, y, β) =

{
y if mP (x, y) ≤ µ(x)

A(x) otherwise

And finally, α = k + 1.

Let y be a β-approximate solution to x under mP ′ , that is, RP ′(x, y) =
OPTP ′(x)/mP ′(x, y) ≤ β. We have to show that RP (x, y) ≤ 1 + α(β − 1).

26 A. Max-3-SAT is APX-hard

We distinguish two cases: The first one is mP (x, y) ≤ µ(x). In this case,

mP (x, y) =
(k + 1)µ(x)−mP ′(x, y)

k

≤ (k + 1)µ(x)−OPTP ′(x)/β

k

≤ (k + 1)µ(x)− (1− (β − 1)) OPTP ′(x)

k

≤ OPTP (x) +
β − 1

k
OPTP ′(x)

≤ OPTP (x) +
β − 1

k
(k + 1)µ(x)

≤ OPTP (x) + (β − 1)(k + 1)µ(x)/r

≤ (1 + α(β − 1)) OPTP (x).

This completes the first case.
For the second case, note that

mP (x, g(x, y)) = mP (x,A(y)) ≤ bOPTP (x) ≤ (1 + α(β − 1)) OPTP (x).

Thus, P ≤AP P
′.

Now Theorems A.2 and A.3 imply the following result.

Theorem A.4. Max-3-SAT is APX-hard.

A.1 Further exercises

Exercise A.1. Show that Max-3-SAT ≤AP Clique. (In particular, Clique

does not have a PTAS, unless P = NP.)

The kth cartesian product of a graph G = (V,E) is a graph with nodes
V k and there is an edge between (u1, . . . , uk) and (v1, . . . , vk) if either ui = vi
or {ui, vi} ∈ E for all 1 ≤ i ≤ k.

Exercise A.2. 1. Prove that if G has a clique of size s, then Gk has a
clique of size sk.

2. Use this to show that if Clique ∈ APX, then Clique ∈ PTAS. Now
apply Exercise A.1.

H̊astad [H̊as99] shows that any approximation algorithm with perfor-
mance ratio n1−ε0 for some ε0 > 0 would imply ZPP = NP On the other
hand, achieving a performance ratio of n is trivial.

4 The BLR test

4.1 Linearity and approximate linearity

Consider a Boolean function

f : {0, 1}n → {0, 1}

and identify {0, 1} with GF(2). In this way, {0, 1}n becomes a vector space
of dimension n. A Boolean function is called linear, if f(x+y) = f(x)+f(y)
for all x, y ∈ {0, 1}n. It is a well known fact from linear algebra that f is
linear iff there are scalars α1, . . . , αn such that

f(x1, . . . , xn) =
n∑
ν=1

ανxν

Since {0, 1} has only two elements, we can rephrase this as follows: A func-
tion f is linear iff there is an S ⊆ {1, . . . , n} such that

f(x1, . . . , xn) =
∑
ν∈S

xν .

Definition 4.1. Let 0 ≤ ε ≤ 1 and let S be a set of Boolean functions.

1. Two Boolean functions f, g : {0, 1}n → {0, 1} are ε-close, if

Pr
x∈{0,1}n

[f(x) = g(x)] ≥ 1− ε.

2. f and g are ε-far from each other if they are not ε-close.

3. f is ε-close to S if there is a g ∈ S such that f and g are ε-close.

If f and g are ε-close, then they agree on a fraction of at least 1 − ε of
all inputs {0, 1}n. We call a function ε-close to linear, if it is ε-close to the
set L of all linear functions {0, 1}n → {0, 1}.

If f is ε-close to linear, then there is a set S such that

Pr
x

[f(x) =
∑
ν∈S

xν] ≥ 1− ε.

In particular, f(x+y) = f(x)+f(y) holds whenever f agrees with the linear
function

∑
ν∈S xν on x+ y, x, and y.

27

28 4. The BLR test

Exercise 4.1. Estimate the probability that this happens!

On the other hand, if f(x+ y) = f(x) + f(y) holds for many pairs x and
y, can we conclude that f is close to linear? If this was true, then we get an
efficient linearity test by just taking some random pair x and y and check
whether f(x, y) = f(x) + f(y). This is a result in the spirit of the PCP
theorem: To check something, we just need to look at a constant number of
randomly chosen values.

If f is linear, then we can find the set S by evaluating f at the unit
vectors e1, . . . , en. This does however not work if f is only close to linear,
since the f(ei) need to agree with the linear function f is close to. So this
“naive” approach does not work.

4.2 Fourier expansion of Boolean function

To show that a function f which satisfies f(x+ y) = f(x) + f(y) for a large
fraction of pairs x and y is indeed close to linear, we will try to find the
linear function that is closest to f . The Fourier expansion will be a tool for
doing so.

Every function f : {0, 1}n → {0, 1} can be interpreted as a vector in
{0, 1}2n , a table filled with its values. (We just take any ordering on {0, 1}n
and fill the components of the vectors with the values f(x) with respect to
this ordering.) If it is clear from the context, we will call this vector again
f .

Of course, all functions {0, 1}n → {0, 1} form a GF(2) vector space of
dimension 2n. But we want to work over R (or C), since we need an inner
product. We could embed {0, 1} to R by mapping 0 (in GF(2)) to 0 (in
R) and 1 (in GF(2)) to 1 (in R) and consider our functions a functions
{0, 1}n → R. However, this simple translation does not respect addition
(1 + 1 = 0 over GF(2) but 1 + 1 6= 0 over R). Therefore, we change the
representation of the Boolean functions: Boolean functions will be functions
from {−1, 1}n → {−1, 1} and we identify the Boolean value 0 (“false”) with
1 and the Boolean value 1 (“true”) with −1. Note that this transformation
is achieved by the mapping x 7→ (−1)x. Now we can view {−1, 1} as a subset
of R: Addition in GF(2) becomes multiplication in R. (This mapping is an
isomorphism between the additive cyclic group GF(2) and the multiplicative
cycle group {−1, 1}.)

Let ` : {0, 1}n → {0, 1} be a linear function corresponding to some set
S ⊆ {1, . . . , n}. As a function {−1, 1}n → {−1, 1}, this function is given by
x 7→

∏
ν∈S xν . We denote this function by χS . To avoid confusion we will

not call this function a linear function but prefer to call it a parity function.

4.2. Fourier expansion of Boolean function 29

Definition 4.2. Let f, g : {−1, 1}n → R. The correlation of f and g is

〈f, g〉 =
1

2n

∑
x∈{−1,1}n

f(x)g(x) = E
x∈{−1,1}n

[f(x)g(x)].

The correlation is an inner product on the vector space of all functions
{−1, 1}n → R.

Exercise 4.2. Let f, g : {−1, 1}n → {−1, 1}. Prove the following facts:

1. 〈f, g〉 ∈ [−1, 1].

2. 〈f, f〉 = 1.

3. f and g are ε-close iff 〈f, g〉 ≥ 1− 2ε.

Definition 4.3. Let f : {−1, 1}n → R and S ⊆ {1, . . . , n}. The fourier
coefficient with respect to χS is

f̂(S) = 〈f, χS〉.

The fourier coefficient f̂(S) measures the closeness between f and the
parity function χS .

Lemma 4.4. Let S, T ⊆ {1, . . . , n}. If S 6= T , then 〈χS , χT 〉 = 0, that is,
χS and χT are orthogonal.

Proof. W.l.o.g. assume that there is an i0 ∈ S \ T . We have

〈χS , χT 〉 =
∑

x∈{−1,1}n

∏
i∈S

xi
∏
j∈T

xj

=
∑

x∈{−1,1}n
xi0

=1

∏
i∈S\{i0}

xi
∏
j∈T

xj −
∑

x∈{−1,1}n
xi0

=−1

∏
i∈S\{i0}

xi
∏
j∈T

xj

= 0.

Every Boolean function f fulfills 〈f, f〉 = 1. Furthermore, there are
2n functions χS , which are pairwise orthogonal. Since the dimension of
the vector space of all functions f : {−1, 1}n → {−1, 1} is 2n, we get the
following result.

Theorem 4.5. The functions χS, S ⊆ {1, . . . , n}, form an orthonormal
basis.

Theorem 4.6. For every function f : {−1, 1}n → R,

f =
∑

S⊆{1,...,n}

f̂(S)χS . (4.1)

30 4. The BLR test

Proof. We can write f =
∑

S αSχS . We have

〈f, χT 〉 = 〈
∑
S

αSχS , χT 〉 =
∑
S

αS〈χS , χT 〉 = αS .

The expression (4.1) is called the Fourier expansion of f . The construc-
tion works with any orthonormal basis.

Exercise 4.3. Let f, g : {−1, 1}n → R. Prove Plancharel’s Theorem:

〈f, g〉 =
∑

S⊆{1,...,n}

f̂(S)ĝ(S).

(An important special case is Parseval’s identity: 〈f, f〉 =
∑

S⊆{1,...,n} f̂(S)2.)

4.3 The BLR test

Next we show that if a function f : {0, 1}n → {0, 1} fulfills f(x + y) =
f(x) + f(y) for many pairs x and y, then it is close to linear. The following
test and its analysis is due to Blum, Luby, and Rubinfeld [BLR93].

Input: oracle access to a Boolean function f : {−1, 1}n → {−1, 1}

Output:

{
accept if f is linear,

reject with probability ≥ ε if f is ε-far from linear

1. Choose x and y uniformly at random from {−1, 1}n.

2. Let z = x · y := (x1y1, . . . , xnyn).

3. Query f on x, y, and z.

4. Accept iff f(x)f(y)f(z) = 1.

Note that f(x)f(y)f(z) = 1 is just the “translation” of f(x) + f(y) =
f(x+ y).

Theorem 4.7. 1. If f is linear, then the BLR test accepts with proba-
bility 1.

2. If f is ε-far form linear, then the BLR test accepts with probability
< 1− ε.

Lemma 4.8. For every function f : {−1, 1}n → {−1, 1},

Pr
x,y∈{−1,1}n

[BLR test accepts f] =
1

2
+

1

2

∑
S⊆{1,...,n}

f̂(S)3.

4.3. The BLR test 31

Proof. Define the following indicator variable

I(x, y, z) =

{
1 BLR test accepts when x and y are chosen

0 otherwise

We have I = 1
2 + 1

2f(x)f(y)f(z). Hence

Pr
x,y

[BLR test accepts] = E
x,y

[I] =
1

2
+

1

2
E
x,y

[f(x)f(y)f(z)]. (4.2)

Replacing the function by its Fourier expansion, we get

E
x,y

[f(x)f(y)f(z)] = E
x,y

[(∑
S

f̂(S)χS(x)

)(∑
T

f̂(T)χT (y)

)(∑
U

f̂(U)χU (z)

)]

= E
x,y

∑
S,T,U

f̂(S)f̂(T)f̂(U)χS(x)χU (y)χT (z)


=
∑
S,T,U

f̂(S)f̂(T)f̂(U) E
x,y

[χS(x)χU (y)χT (z)]. (4.3)

We have

χS(x)χT (y)χU (z) =
∏
i∈S

xi
∏
j∈T

yj
∏
k∈U

zk

=
∏
i∈S

xi
∏
j∈T

yj
∏
k∈U

xkyk

=
∏

i∈S∆U

xi
∏

j∈TδU
yj ,

where A∆B = A \B ∪B \A denotes the symmetric difference. Since the xi
and yj are independent, we get

E
x,y

[χS(x)χU (y)χT (z)] =
∏

i∈S∆U

E
x,y

[xi]
∏

j∈T∆U

E
x,y

[yj].

Since E[xi] = 0 and E[yj] = 0, the righthand side is zero, except when
the product is empty. Then it equals 1. The product is empty iff S∆U =
T∆U = ∅. But this means S = T = U . Therefore, by (4.2) and (4.3),

E
x,y

[BLR test accepts f] =
1

2
+

1

2

∑
S

f̂(S)3.

Lemma 4.9. If

Pr
x,y∈{−1,1}n

[BLR test accepts f] ≥ 1− ε,

then f is ε-close to linear.

32 4. The BLR test

Proof. By Lemma 4.8,

1

2
+

1

2

∑
S

f̂(S)3 = Pr
x,y

[BLR tests accepts f] ≥ 1− ε.

From this, we get

1− 2ε ≤
∑
S

f̂(S)3 ≤ max
S

f̂(S) ·
∑
T

f̂(T)2

︸ ︷︷ ︸
=1

.

The sum on the righthand side is 1 by Parseval’s identity and the fact that
f is Boolean. Thus there is a set S0 such that f̂(S0) ≥ 1− 2ε. But f̂(S0) is
the correlation between f and χS0 . Therefore, f and χS0 are ε-close.

Proof of Theorem 4.7. The first statement is clear. For the second
statement note that if the test accepted f with probability ≥ 1− ε, then f
would be ε-close to linear by Lemma 4.9.

5 PCP “light”

In this chapter, we will prove a “light” version of the PCP theorem, namely,
NP ⊆ PCP[poly(n),O(1)]. The verifier V may use a polynomial number of
random bits, thus the proof π can be exponentially long. Still V has to run
in polynomial time.

5.1 The Walsh-Hadamard code

Definition 5.1. The relative Hamming distance of two vectors x, y ∈ {0, 1}n
is ∆(x, y) = Pri∈{0,1}n [xi 6= yi].

The relative Hamming distance is the number of places where x and y
differ, normalized by the length n.

Definition 5.2. For every δ ∈ [0, 1], a function e : {0, 1}n → {0, 1}m is an
error correcting code with distance δ, if

∆(x, y) ≥ δ for all x, y ∈ {0, 1}n, x 6= y.

The image im(e) of e is the set of code words.

For a (column) vector x ∈ {0, 1}n, xT denotes the transposed (row)
vector. For two vectors x, y ∈ {0, 1}n, xT · y =

∑n
ν xνyν is the scalar

product of x and y (modulo 2). The Walsh-Hadamard code is the function
wh : {0, 1}n → {0, 1}2n mapping x ∈ {0, 1}n to a vector a ∈ {0, 1}2n that
consists of the values xT · z for all z ∈ {0, 1}n. (To do this, we order the
strings in {0, 1}n in a standard way, e.g., lexicographically.) Note that the
code words of the Walsh-Hadamard code are the tables of all linear maps
{0, 1}n → {0, 1}. Thus we can think of the code words as being linear
functions.

Lemma 5.3. For every x ∈ {0, 1}n, x 6= 0,

Pr
y∈{0,1}n

[xT · y = 0] =
1

2
.

Proof. W.l.o.g. x1 = 1. For y = (y1, . . . , yn) = {0, 1}n,

xT · y = y1 +
n∑
ν=2

xνyν .

Thus, for every (y2, . . . , yn) ∈ {0, 1}n, either xT · (1, y2, . . . , yn) = 0 and
xT · (0, y2, . . . , yn) = 1 or vice versa.

33

34 5. PCP “light”

Lemma 5.4. The function wh is an error correcting code with distance 1
2 .

Proof. The function wh is linear (over GF(2)). The set of code words is
a linear space.1 Take two code words a = wh(x) and b = wh(y). ∆(a, b) is
the probability that the vector a− b contains a 1. Note that a− b is again
a code word. Therefore to show that wh has distance 1

2 , it is sufficient to
show that every non-zero code word c, the probability that c contains a 1 is
at least 1

2 . But this follows from Lemma 5.3.

Error correcting codes e : {0, 1}n → {0, 1}m with some distance δ should
not only exist, we want to be able to compute them. First of all, this means
that the mapping e is efficiently computable, that is, in time polynomial in
m (“efficient encoding”). Second, for every a ∈ {0, 1}m, we should be able
to find a b ∈ im(e) such that ∆(a, b) < δ/2 if such a b exists. Note that
in this case, b is unique (“efficient decoding”). Third, we want m to be as
small as possible. We also do not just want to be an error correcting code
for one n, but a family of codes for every n.

The function wh naturally extends to a families of functions. Encoding
is easy. The parameter m, however, is exponential in n. Usual, this is bad.
But for our purposes, this will be fine, since the Walsh-Hadamard code
allows local decoding : For every a ∈ {0, 1}m that is ε-close to linear with
ε < 1

4 , there is a unique b ∈ im(wh) with ∆(a, b) < 1
4 . Given a and an index

1 ≤ i ≤ m, we can compute bi, the ith bit of b, in time polynomial in n (and
not m!) by just looking at a constant number of bits of a.

Input: oracle access to a : {0, 1}n → {0, 1} that is ε-close to linear (ε < 1
4),

index x ∈ {0, 1}n
Output: b(x) with b being the unique code word with ∆(a, b) < 1

4

1. Choose y ∈ {0, 1}n uniformly at random.

2. Let z = x+ y.

3. Query a(y) and a(z).

4. Return a(z − y).

Lemma 5.5. If a is ε-close to linear, ε < 1
4 , then with probability ≥ 1− 2ε,

the algorithm above returns b(x).

Proof. Since a is ε-close to b, the probability that a(y) 6= b(y) for a
randomly chosen y is ≤ ε. Furthermore, the probability that a(z) 6= b(z) is
also ≤ ε, since z is uniformly distributed, too. Therefore, the algorithm is
correct.

1Such a code is called a linear code.

5.2. Quadratic Equations over GF(2) 35

Note that above, we cannot just return a(x). This would only be correct
with constant probabilty if we choose x at random! Our algorithm is however
correct with constant probability for all x and the probability is only taken
over the internal random bits of the algorithm.

5.2 Quadratic Equations over GF(2)

A quadratic equation over GF(2) in variables x1, . . . , xn is an equation of
the form

n∑
i=1

n∑
j=1

αi,jxixj = β.

with αi,j , β ∈ {0, 1}. Since u2
i = ui over GF(2), we implicitly allow linear

terms. Furthermore, if the monomials xixj and xjxi are both present (with
coefficient 1), then they cancel each other out, but this is ok. A set of
quadratic equations is satisfiable, if there is a {0, 1}-valued assignment to
the variables such that every equation is satisfied. Quad-Eq is the set of all
systems of polynomial equations that are satisfiable.

Lemma 5.6. Quad-Eq is NP-complete.

Proof sketch. Quad-Eq is obviously in NP. For the hardness proof, one
can reduce the circuit satisfiability problem CSAT to Quad-Eq. For every gate
(including the inputs), we have a variable g. If g for instance computes the
conjunction of two gates with variables g′ and g′′, then we add the equation
g = g′ · g′′. For the output gate, we add the equation g = 1.

For two vectors u, v ∈ {0, 1}n, their tensor product u ⊗ v is the n × n-
matrix with entries uivj , 1 ≤ i ≤ n, 1 ≤ j ≤ n. Note that u ⊗ v is a rank
one matrix. We will identify n × n-matrices with vectors of length n2 by
rearranging the entries in some canonical way and vice versa. The tensor
product can be used to “linearize” quadratic equations. Let A = (αi,j)
be the matrix corresponding to a quadratic equation and think of it as a
vector of length n2. For any X ∈ {0, 1}n2

, the scalar product AT ·X is the
value of the equation evaluated at X. But wait, not every X is a consistent
assignment to the variables, only those that can be written as x⊗x for some
x ∈ {0, 1}n.

So Quad-Eq can be rewritten as follows: Given a matrix A ∈ {0, 1}m×n2

and a vector b ∈ {0, 1}m, is there a vector X = x ⊗ x for some x ∈ {0, 1}n
such that AX = b.

36 5. PCP “light”

5.3 The verifier for Quad-Eq

5.3.1 Testing tensor products

First of all, we present an algoritm for testing whether some vector X is of
the form x⊗ x.

Input: Oracle access to C = wh(X) and c = wh(x) for some X = {0, 1}n2

and x ∈ {0, 1}n

Output:

{
accept if X = x⊗ x
reject with probabilty ≥ 1/4 otherwise

1. Choose random y, z ∈ {0, 1}n.

2. Accept if C(y ⊗ z) = c(y) · c(z)

Lemma 5.7. If X = x ⊗ x, then the algorithm accepts with probability 1.
Otherwise, it rejects with probability at least 1

4 .

Proof. We have

c(y) · c(z) = (xT · y) · (xT · z)

=

(
n∑
i=1

xiyi

) n∑
j=1

xjzj


=

∑
1≤i,j≤n

(xixj)(yizj)

= yT · (x⊗ x) · z,

(we view x⊗ x as a n× n-matrix) and

C(y ⊗ z) =
∑

1≤i,j≤n
Xi,jyizj = yT ·X · zj

(and X as well as an n×n-matrix). If X = x⊗x, then C(y⊗z) = c(y) ·c(z)
for all y and z. If X 6= x⊗ x, then there is a column of X 6= x⊗ x in which
X 6= x⊗ x differ. Thus yT ·X 6= yT · (x⊗ x) with probability at least 1

2 by
Lemma 5.3. In this case, yT ·X · z 6= yT · (x⊗ x) · z again with probability
1
2 . Therefore, if X 6= x⊗ x, the algorithm rejects with probability ≥ 1

4 .

5.3.2 Testing satisfiabiliy

Next, we test whether some x encodes a satisfying assignment.

Input: A ∈ {0, 1}m×n2
, b ∈ {0, 1}m, oracle access to C = wh(x ⊗ x) for

some x ∈ {0, 1}n.

Output:

{
accept if x is a satisfying assignment of (A, b)

reject with probability ≥ 1
2 otherwise

5.3. The verifier for Quad-Eq 37

1. Choose y ∈ {0, 1}m uniformly at random.

2. Query C(yTA) = (x⊗x) ·yTA (we view yTA as a vector of length n2).

3. Accept if (x⊗ x) · yTA = yT b

Lemma 5.8. If x satisfies (A, b), then the algorithm above always accepts.
Otherwise, it rejects with probability ≥ 1

2 .

Proof. We have

(x⊗ x) · yTA =
∑

1≤i,j≤n
xixj

m∑
k=1

ykAk,(i,j)

=

n∑
k=1

yk
∑

1≤i,j≤n
Ak,(i,j)xixj = yT ·A · x⊗ x

If A ·x⊗x = b, then yt ·A ·x⊗x = yT b for all y. Otherwise yt ·A ·x⊗x 6= yT b
with probability ≥ 1

2 by Lemma 5.3.

5.3.3 The verifier

Theorem 5.9. NP ⊆ PCP[poly(n),O(1)].

Proof. We claim that the following verifier is a verifier for Quad-Eq. Since
Quad-Eq is NP-complete, the claim follows.

Input: A ∈ {0, 1}m×n2
, b ∈ {0, 1}m oracle access to a proof π ∈ {0, 1}2n

2
+2n .

π is interpreted as C = wh(X) with X ∈ {0, 1}n2
and c = wh(x) with

x ∈ {0, 1}n.

1. Run the BLR test on C and c. If any of these tests fails, then reject.

2. Test whether X = x⊗ x using the tensor product test. If not, reject.
(Use the self-correction property of the Walsh-Hadamard code to query
wh(X) and wh(x).)

3. Test whether x satisfies (A, b). If yes, accept. Otherwise, reject
(Use the self-correction property of the Walsh-Hadamard code to query
wh(X) and wh(x).)

If (A, b) ∈ Quad-Eq, then we choose x as a satisfying assignment, X =
x ⊗ x, C = wh(X), and c = wh(x). By construction, all tests are passed
and the self-correction algoritm always returns the true value. Therefore,
the verifier accepts with probability 1.

38 5. PCP “light”

Assume (A, b) /∈ Quad-Eq. If C is 0.1-far from linear or c is 0.1-far from
linear, then π is rejected with probability 0.1.

So we can assume that C and c are 0.1-close to linear. We do three
queries in step 2 and one in step 3. If C and c are 0.1-close to linear, then
the probability that all of them are correct is ≥ 1− 4 · 0.2 = 0.2.

If X 6= x⊗ x, then the verifier will detect this in step 2 with probability
≥ 1

4 . So proofs π with C and c being 0.1-close to linear and X 6= x⊗ x are
rejected with probability 0.2/4 = 0.05.

If X = x ⊗ x, then the verifier will detect in step 3 that x is not a
satisfying assignment with probability at least 1

2 . Therefore, π is rejected
with probability 0.2/2 = 0.1.

In any case, the verifier will reject with probability ≥ 0.05. We can
amplify this probability by running the verifier a constant number of times.

6 Assignment Tester

6.1 Constraint graph satisfiability

A constraint graph G over some alphabet Σ is a directed1 multigraph (V,E)
together with a mapping c : E → P(Σ). An assignment is a mapping
V → Σ. The assignment a satisfies the (constraint at) edge e = (u, v) if
(a(u), a(v)) ∈ c(e). The unsatisfiability value of a is the number of con-
straints not satisfied by a divided by the number of constraints (edges).
This value is denoted by UNSATa(G). The unsatisfiability value of G is
UNSAT(G) = mina UNSATa(G).

Problem 6.1. Maximum Constraint graph satisfiability Max-CGS is the fol-
lowing problem:

Instances: constraint graphs ((V,E),Σ, c)
Solutions: assignments a : V → Σ
Measure: (1−UNSATa(G)) · |E|
Goal: max

Exercise 6.1. The following two statements are equivalent:

1. There is an ε > 0 such that gap(1− ε, 1)-Max-3-SAT is NP-hard.

2. There is an ε > 0 such that gap(1− ε, 1)-Max-CGS is NP-hard.

Thus, to prove the PCP-Theorem, we can show the NP-hardness of
gap(1 − ε, 1)-Max-CGS instead of gap(1 − ε, 1)-Max-3-SAT. The former one
has the advantage that it is easier to apply results from graph theory, in
particular expander graphs, which we will introduce in the next chapter.

6.2 Assignment testers

Assignment testers provide a way to reduce the alphabet size of a constraint
graph satisfiability problem. Every constraint over a large alphabet Σ0 will
be replaced by a graph over a small alphabet Σ. This will be needed in our
proof of the PCP theorem.

1We consider directed graphs here to allow asymmetric relations on the edges. By
giving the edges a direction, we have a first and a second node. Alternatively, we could
order the nodes globally. For any other purposes, we will ignore the direction of the edges
completely.

39

40 6. Assignment Tester

Definition 6.2. Let G0 be a graph with two nodes x and y, one edge e0 =
(x, y) with a constraint c0 over some (large) alphabet Σ0. An assignment
tester over Σ is a deterministic algorithm that given G0 outputs a constraint
graph G = ((V,E),Σ, c) such that the following holds:

1. There are two disjoint sets X,Y ⊆ V and mappings fx : Σ0 → Σ|X|,
fy : Σ0 → Σ|Y |, gx : Σ|X| → Σ0, gy : Σ|Y | → Σ0.

2. If (a, b) is an assignment that satisfies G0, then there is an assignment
d to the nodes in V \ (X ∪ Y) such that (fx(a), fy(b), d) satisfies G.

3. There is an ε > 0 such that for every assignment A = (a′, b′, d) to G
with UNSATA(G) ≤ ε, (gx(a′), gy(b

′)) satisfies G0.

Above, (fx(a), fy(b), d) : V → Σ the assignment that gives every node
in X the corresponding value of fx(a), every node in Y the corresponding
value of fy(b) and every other node the corresponding value of d. We do
not care for running times, since we will apply the assignment tester only
to constant size instances.

The maps fx and fy map a satisfying assignment of G0 to an assignment
of X and Y that can be extended to a satisfying assignment of G. The maps
gx and gy map an assignment which satisfies many constraints of G to an
assignment that satisfies G0.

Theorem 6.3. For every constraint graph G0 as above, there exists an
assignment tester.

Proof. LetG0 be the given constraint graph. We identify Σ0 with {0, 1}k0
where k0 = dlog2 |Σ0|e. {0, 1}k0 might be larger than Σ0; we assume that
the constraint c0 is not satisfied if one of the nodes x or y is assigned one of
these surplus values. Let C be a boolean circuit on 2k0 inputs that computes
c0 viewed as a function {0, 1}k0 × {0, 1}k0 → {0, 1}.

Using the construction of Lemma 5.6, we construct an instance Q of
Quad-Eq that is equivalent to C. Note that the reduction of Lemma 5.6 is
parsimonious, that is, the number of satisfying assignments of C and Q are
the same. The instance Q has three sets of variables, two of them correspond
to the two inputs to c0, the third one to the auxilliary variables introduced
by the reduction to Q.

Consider the verifier M for Quad-Eq constructed in Theorem 5.9. We
modify it in such a way that the assignment to the variables stored in x will
be given by three different Walsh-Hadamard codes, one for each of the three
sets of variables in Q. M will need two additional BLR tests and whenever
we want to query wh(x), we make three queries to the three parts and add
the answers (modulo 2). We assume that M has large enough rejection
probability, e.g., ≥ 1

2 .

6.2. Assignment testers 41

Let k ∈ O(1) be the number of queries made by M . We set Σ = {0, 1}k.
For every bit of the proof we will have one node. They are grouped into
three sets X, Y , and Z. X and Y correspond to the two sets of input
variables of Q, Z to the auxilliary variables in Q and to the variables of the
Walsh-Hadamard code of the tensor product. An assignment to these nodes
is interpreted as a Boolean assignment by just looking at the first component
of Σ. For every random string r of M , we have an additional node vr. vr is
connected to all the nodes in X, Y , and Z that correspond to bits queried
by M with random string r. The value assigned to vr is considered as the
answers to the queries made by M with random string r. Consider an edge
connecting vr with some u ∈ X ∪ Y ∪ Z. Let s be the value assigned to
vr and t be the value assigned to u. The constraint on the edge (u, vr) is
satisfied by (s, t)

• M with random string r and answers to the queries as given by t
accepts.

• The first bit of s is the same as the bit of t that corresponds to the
query to u.

We claim that this yields an assignment tester. The mappings fx and fy
map the assignments to x and y of G0 to the Walsh-Hadamard code of x and
y. By the construction of M , we can extend this to a satisfying assignment.

The mappings gx and gy map the assignments a′ and b′ to the nodes
in X and Y to the unique strings a and b with ∆(wh(a), a′) ≤ 1

4 and
∆(wh(b), b′) ≤ 1

4 if a′ and b′ are (1
4 − ε)-close to linear. Otherwise, gx

and gy map a′ and b′ to anything. Assume we have an assignment A to
the nodes of G with UNSATA(G) ≤ 1

3k . This means that for a fraction of
2
3 of the vr, all constraints on edges incident with vr are fulfilled. But this
means, that M with random string r and proof as given by A accepts. In
particular, the acceptance probability of M on Q with proof given by A is
≥ 2

3 . Therefore, Q is satisfiable and a′ and b′ have to be close to linear,
because otherwise the rejection probability would be less than 1

2 .

42 6. Assignment Tester

Implementation details

• The assignment is split into three parts, two of length k0 corre-
sponding to the two nodes of the original instance G0 and one
of length ` corresponding to the auxilliary variable introduced
in the reduction from CSAT to Quad-Eq.

• Therefore, instead of one string c (= wh(x)), we have three
strings a′, b′, and d′, each of them interpreted as a Walsh-
Hadamard code.

• If the verifier of Theorem 5.9 queries c(y), where y ∈
{0, 1}2k0+`, the new verifier queries the three strings a′, b′,
and c′ at y1, y2 ∈ {0, 1}k0 and y3 ∈ {0, 1}` respectively, where
y = (y1, y2, y3), and add the results (modulo 2).

• We repeat the BLR test such that we can have rejection prob-
ablity < 1

2 only if the strings in the proof are all (1
4 − ε)-close

to linear.

7 Expander graphs

Throughout this chapter, we are considering undirected multigraphs G =
(V,E) with self-loops. The degree d(v) of a node v is the number of edges
that v belongs to. This particularly means that a node with a self-loop and
no other edges has degree 1 (and not 2, which is a meaningful definition,
too). This definition of degree will be very convenient in the following. A
graph is called d-regular if d(v) = d for all v ∈ V .

It is a well-known fact that for graphs without self-loops, the sum of the
degrees of the nodes is twice the number of edges (proof by double-counting).
With self-loops, the following bounds hold.

Fact 7.1. 1. We have |E| ≤
∑

v∈V d(v) ≤ 2|E|.

2. If G is d-regular, then |E| ≤ d|V | ≤ 2|E|.

A walk in a graph G = (V,E) is a sequence (v0, e1, v1, e2, . . . , e`, v`) such
that eλ = {vλ−1, vλ} for all 1 ≤ λ ≤ `. v0 is the start node, v` is the end
node of the walk. Its length is `. A walk can visit the same node or edge
several times, i.e., it is allowed that vi = vj or ei = ej for some i 6= j.

A graph is connected if for all pairs of nodes u and v, there is a walk
from u to v. The neighbourhood N(v) of v is the set of all nodes u such
that {v, u} ∈ E. In general, the t-neighbourhood is the set of all nodes u
such that there is a walk from v to u of length t.

7.1 Algebraic graph theory

The adjacency matrix of G is the |V | × |V |-matrix

A = (au,v)u,v∈V

where au,v is the number of edges between u and v. We will usually index the
rows and columns by the nodes itself and not by indices from {1, . . . , |V |}.
But we will assume that the nodes have some ordering, so that when we
need it, we can also index the rows by 1, . . . , |V |.

We will now apply tools from linear algebra to A in order to study
properties of G. This is called algebraic graph theory. The book by Biggs
[Big93] is an excellent introduction to this field. Everything you want to
know about expander graphs can be found in [HLW06].

Because G is undirected, A is symmetric. Therefore, A has n real eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λn and there is a orthonormal basis consisting of
eigenvectors.

43

44 7. Expander graphs

Lemma 7.2. Let G be a d-regular graph with adjacency matrix A and eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λn.

1. λ1 = d and 1n = (1, . . . , 1)T is a corresponding eigenvector.

2. G is connected if and only if λ2 < d.

Proof. We start with 1: Since G is d-regular,

d = d(v) =
∑
u∈V

av,u for all v

and
A · 1n = d · 1n.

Thus d is an eigenvalue and 1n is an associated eigenvector.
Let λ be any eigenvalue and b be an associated eigenvector. We can scale

b in such a way that the largest entry of b is 1. Let this entry by bv. Then

λ = λ · bv =
∑
u∈V

av,ubu ≤
∑
u∈V

av,u = d.

Therefore, d is also the largest eigenvector.
Now comes 2. “=⇒”: Let b be an eigenvector associated with the eigen-

value d. As above, we scale b such that the largest entry is 1. Let bv be
this entry. We next show that for every node u ∈ N(v), bu = 1, too. Since
G is connected, b = 1n follows by induction. But this means that d has
multiplicity 1 and λ2 < d.

A · b = d · b implies

d = dbv =
∑
u∈V

av,ubu =
∑

u∈N(v)

av,ubu.

Since bu ≤ 1 for all u and since d =
∑

u∈N(v) av,u, this equation above can
only be fulfilled if bu = 1 for all u ∈ N(v).

“⇐=”: If the graph G is not connected, then A =

(
A1 0
0 A2

)
. There-

fore (1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1) (with the appropriate number
of 1’s and 0’s) are linearly independent eigenvectors associated with d.

Let ‖.‖ denote the Euclidean norm of R|V |, that is ‖b‖ =
√∑

v∈V b
2
v.

Definition 7.3. Let G be a graph with adjacency matrix A. Then

λ(G) = max
b⊥1n

‖Ab‖
‖b‖

.

Theorem 7.4. Let G be a d-regular graph with adjacency matrix A and
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

7.2. Edge expansion 45

1. λ(G) = |λj | for some j.

2. λ(G) = maxb⊥1n
‖Ab‖
‖b‖ is attained for any eigenvector b associated with

λj.

3. λ(G) = max{|λ2|, |λn|}.

4. λ(G) ≤ d.

Proof. Let b be a vector for which the maximum is attained in the defi-
nition of λ(G). W.l.o.g. let ‖b‖ = 1. Let c1, . . . , cn be an orthonormal basis
consisting of eigenvectors of A. W.l.o.g. let c1 = 1n. Since b is orthogonal
to 1n, we have

b = β2c2 + · · ·+ βncn,

Since c1, . . . , cn is a orthonormal family,

1 = ‖b‖2 = b22 + · · ·+ b2n.

Let λj be the eigenvalue cj is associated with. We have

λ(G) = ‖Ab‖
= ‖β2Ac2 + . . . βnAcn‖

=
√

(β2λ2)2 + · · ·+ (βnλn)2.

Since b is a vector for which the maximum is attained, βj can only be nonzero
for a λj whose absolute value is maximal among λ2, . . . , λn.

It is an easy exercise to derive the statements 1–4 from this.

Exercise 7.1. Prove statements 1–4 of Theorem 7.4.

λ(G) is also called the second largest eigenvalue. (More correctly, it
should be called the second largest absolute value of the eigenvalues, but
this is even longer.)

7.2 Edge expansion

Definition 7.5. Let G be a d-regular graph. The edge expansion h(G) of
G is defined as

h(G) = min
S⊆V :|S|≤|V |/2

E(S, S̄)

|S|
.

E(S, S̄) is the set of all edges with one endpoint in S and one endpoint in
S̄. G is called an h-expander if h(G) ≥ h.

Large edge expansion means that any set S has many neighbours that
are not in S. This will be a very useful property. Families of expanders can
be constructed in polynomial time, one construction is [RVW02]. We will
prove it in some later chapter.

46 7. Expander graphs

Theorem 7.6. There are constants d0 ∈ N and h0 > 0 and a deterministic
algorithm that given n constructs in time polynomial in n a d0-regular graph
Gn with h(G) > h0.

Large edge expansion means small second largest eigenvalue and vice
versa. We will need the following bound.

Theorem 7.7. Let G be a d-regular graph. If λ(G) < d1 then

λ(G) ≤ d− h(G)2

2d
.

To prove the theorem, it is sufficient to prove

h(G)2 ≤ 2d(d− λ) (7.1)

h(G)2 ≤ 2d(d+ λ) (7.2)

by Theorem 7.4. The proofs of both inequalities are very similar, we will
only show the first one. Let

B = dI −A
B′ = dI +A

where I is the n × n-identity matrix. Let f ∈ Rn. Think of f being a
vector of weights or values on the nodes. Later, we will derive f from an
eigenvector of A. In the following, a summation over “e = {u, v}” is a sum
over all edges in E with two end nodes and a summation over “e = {v}” is
a sum over all self-loops in E.

Lemma 7.8.

fTBf =
∑

e={u,v}

(fu − fv)2

fTB′f ≥
∑

e={u,v}

(fu + fv)
2

Proof. We have

fTBf =
∑
v∈V

df2
v − fTAf

=

 ∑
e={u,v}

(f2
u + f2

v) +
∑
e={v}

f2
v

−
 ∑
e={u,v}

2fufv +
∑
e={v}

f2
v


=

∑
e={u,v}

(fu − fv)2.

1We have to exclude bipartite graphs, which have λn = −d but can have edge expansion
> 0. Our prove will break down if λn = −d, because (d+λ) must not be zero when proving
the counter part of (7.3).

7.2. Edge expansion 47

The second inequality is proven in a similar manner.

To a given f , let

F =
∑

e={u,v}

|f2
u − f2

v |.

Let β0 < β1 < · · · < βr be the different values that f attains. Let

Uj = {u ∈ V | fu ≥ βj},
U ′j = {u ∈ V | fu ≤ βj}

be the set of all nodes whose value fu is at least or at most βj , respectively.

Lemma 7.9.

F =

r∑
j=1

|E(Uj , Ūj)|(β2
j − β2

j−1)

F =
r−1∑
j=0

|E(U ′j , Ū
′
j)|(β2

j+1 − β2
j)

Proof. Let e = {u, v} ∈ E be an edge that is no self-loop. Assume that
fu = βi ≥ βj = fv. The contribution of e to F is β2

i − β2
j . On the other

hand, e crosses Uk and Ūk for j ≤ k ≤ i− 1. Thus the contribution of e to
right-hand side of the first equation in the statement of the lemma is

(β2
i − β2

i−1) + (β2
i−1 − β2

i−2 + · · ·+ (β2
j+1 − β2

j) = β2
i − β2

j .

Thus both sides of the equation are equal. The second equation is shown in
a similar manner.

Lemma 7.10. We have

F ≤
√

2d
√
fTBf‖f‖ .

If f(v) ≤ 0 for all v, then

F ≤
√

2d
√
fTB′f‖f‖ .

Proof. We have

F =
∑

e={u,v}

|f2
u − f2

v |

=
∑

e={u,v}

|fu − fv| · |fu + fv|

≤
√ ∑
e={u,v}

(fu − fv)2 ·
√ ∑
e={u,v}

(fu + fv)2

=
√
fTBf ·

√ ∑
e={u,v}

(fu + fv)2

48 7. Expander graphs

by the Cauchy–Schwartz and Lemma 7.8 We can bound the second factor
by

√ ∑
e={u,v}

(fu + fv)2 ≤
√

2
∑

e={u,v}

(f2
u + f2

v)

≤
√

2d
∑
v∈V

f2
v

≤
√

2d‖f‖ .

The second inequality is proven in a similar manner.

Lemma 7.11. Let fv ≥ 0 for all v ∈ V or fv ≤ 0 for all v ∈ V . If
| supp(f)| ≤ n/2, then F ≥ h(G)‖f‖2.

Proof. We only show the statement for fv ≥ 0, the other case is com-
pletely similar. Since | supp(f)| ≤ n/2, we have β0 = 0 and |Uj | ≤ n/2 for
j > 0. We have |E(Uj , Ūj)| ≥ h(G)|Uj |. By Lemma 7.9,

F =
r∑
j=1

|E(Uj , Ūj)|(β2
j − β2

j−1)

≥ h(G)
r∑
j=1

|Uj |(β2
j − β2

j−1)

= h(G)

r−1∑
j=1

β2
j (|Uj | − |Uj+1|)︸ ︷︷ ︸

=|{v|fv=βj}|

+β2
r |Ur|

= h(G)‖f‖2.

Finally, we will now prove (7.1) and (7.2). We only show (7.1), (7.2) is
proven in the same manner. Let λ < d be an eigenvector of A. d − λ is an
eigenvector of B = dI − A and every eigenvector of A associated with λ is
an eigenvector of B associated with d− λ. Let g be such an eigenvector. g
is orthogonal to 1n. We can assume that g has at most n/2 entries that are
≥ 0, otherwise we consider −g instead. We define

fv =

{
gv if gv ≥ 0

0 otherwise

7.2. Edge expansion 49

and W = supp(f). By construction, |W | ≤ n/2. For v ∈W , we have

(Bf)v = dfv −
∑
u∈V

av,ufu

= dgv −
∑
u∈W

av,ugu

≤ dgv −
∑
u∈V

av,ugu

= (d− λ)gv.

Since fv = 0 for v /∈W , this implies

fTBf =
∑
v∈V

fv(Bf)v

≤ (d− λ)
∑
v∈V

fvgv

≤ (d− λ)
∑
v∈V

f2
v

= (d− λ)‖f‖2. (7.3)

By Lemmas 7.10 and 7.11,

h(G)‖f‖2 ≤
√

2d
√
fTBf‖f‖ .

Squaring this and exploiting the inequality before, we get

h(G)2‖f‖4 ≤ 2d · fTBf · ‖f‖2 ≤ 2d(d− λ)‖f‖4.

Because g is orthogonal to 1n and nonzero, it has at least one entry > 0.
Therefore, ‖f‖ > 0 and we get

h(G)2 ≤ 2d(d− λ).

The second inequality is proven in the same manner.

8 Random walks on expanders

Consider the following method RW to generate a walk in a d-regular graph
G = (V,E).

Input: d-regular graph G, ` ∈ N

1. Randomly choose a vertex v0.

2. For λ = 1, . . . , ` choose vλ ∈ N(vλ−1) uniformly at random.

3. Return (v0, . . . , v`).

Let W` be the set of all `-walks in G. We have |W`| = nd`, since a path
is uniquely specified by its start node (n choices) and a vector {1, . . . , d}`
which tells us which of the d edges of the current node is the next in the
given walk. For this, we number the d edges incident with a node arbitrarily
from 1 to d. It is now clear that method RW generates the walks according
to the uniform distribution on RW.

Lemma 8.1. Method RW returns each walk W ∈ W` with a probability of
1/(nd`).

Instead of choosing a start node, we can choose a node in the middle.
This modified method RW′ also generates the uniform distribution on all
walks of length `.

Input: d-regular graph G, ` ∈ N, 0 ≤ j ≤ `

1. Randomly choose a vertex vj .

2. For λ = j − 1, . . . , 0 choose vλ ∈ N(vλ+1) uniformly at random.

3. For λ = j + 1, . . . , ` choose vλ ∈ N(vλ−1) uniformly at random.

4. Return (v0, . . . , v`).

In the following, let G be a d-regular graph with adjacency matrix A.
Let Ã = 1

d · A be the normalized adjacency matrix. Ã is doubly stochastic,
i.e., all entries are nonnegative and all row sums and all column sums are 1.
λ is an eigenvalue of Ã iff d · λ is an eigenvalue of A.

Let x = (xv)v∈V be a probability distribution on the nodes v and consider
x as an element of Rn. If we now select a node v according to x, then select
an edge {v, u} (u = v is allowed) incident with v uniformly at random, and
then go to u, the probability distribution that we get is given by Ã · x.
Applying induction we get the following result.

50

51

Lemma 8.2. Let x be a probability distribution on V . If we run method
RW for ` steps and draw the start node according to x, then this induces a
probability distribution on V given by Ã`x.

Let F ⊆ E be a set of edges. We want to estimate the probability that
a random walk of length j that starts in an edge of F ends in an edge of F ,
too.

To this aim, we first calculate the probability xv that a random walk
that starts with an edge of F starts in v. The distribution x = (xv)v∈V is
generated by the following process: First choose an edge f ∈ F at random.
Then choose one of its nodes uniformly at random as the start node (and
the other node as the second node). Here it makes a difference whether f is
a self-loop or not. We have

xv =
1

|F |
·
(

1

2
|{e = {u, v} | e ∈ F, u 6= v}|+ |{e = {v} | e ∈ F}|

)
≤ d

|F |
(8.1)

By symmetry, this is also the probability that v is the second node in a walk
that starts with an edge in F .

Second we estimate the probability yv that if we choose a random edge
incident to v, we have chosen an edge in F . This is simply

yv =
1

d
· |{e = {u, v} | e ∈ F}|

=
2|F |
d
· 1

2|F |
|{e = {u, v} | e ∈ F}|

≤ 2|F |
d
· xν . (8.2)

Now the probability distribution on the nodes after performing a walk
of length j that starts in F is given by Ãj−1xv. (Note that xv is also the
probability that v is the second node in the walk.) The probability that the
(j + 1)th edge is in F is then given by〈

y, Ãj−1x
〉

(8.3)

where 〈., .〉 is the ordinary scalar product in Rn.

To estimate (8.3), we will exploit the Cauchy-Schwartz inequality. For
this, we need estimate ‖x‖. x1 = 1

n1n is an eigenvector of Ã associated with
1. Let x⊥ = x− x1. x⊥ is orthogonal to x1, because

〈1n, x⊥〉 =
∑
v∈V

(xv − 1/n) = 1− 1 = 0.

52 8. Random walks on expanders

Ãkx⊥ is also orthogonal to x1 for every k, since

〈1n, Ãkx⊥〉 = 〈(Ãk)T 1n, x
⊥〉 = 〈Ãk1n, x⊥〉 = 〈1n, x⊥〉 = 0.

Let λ̃ = λ(G)/d. We have

‖Ãj−1x⊥‖ ≤ |λ̃|j−1‖x⊥‖

and

‖x⊥‖2 = ‖x− x1‖2

= ‖x‖2 − 2〈x, x1〉+ ‖x1‖2

= ‖x‖2 − 2

n

∑
v∈V

xv +
1

n

< ‖x‖2.

By (8.1),

‖x‖2 ≤ max
v∈V

xv ·
∑
v∈V

xv = max
v∈V

xv ≤
d

|F |
.

Altogether, we have

〈y, Ãj−1x⊥〉 ≤ ‖y‖ · ‖Ãj−1x⊥‖ ≤ 2|F |
d
‖x‖ · |λ̃j−1|‖x‖ ≤ 2‖λ̃‖j−1.

Finally, the probability that ej+1 ∈ F can be bounded by

〈y, Ãj−1x〉 = 〈y, Ãj−1x1〉+ 〈y, Ãj−1x⊥〉
≤ 〈y, x1〉+ 2|λ̃|j−1

=
1

n

∑
v∈V

yv + 2|λ̃|j−1

≤ 2|F |
dn

+ 2|λ̃|j−1

≤ 2

(
|F |
|E|

+

(
λ

d

)j−1
)
.

Lemma 8.3. Consider a random walk on a d-regular graph G = (V,E)
starting with an edge from a set F ⊆ E. Then the probability that the
(j + 1)th-edge of the walk is again in F is bounded by

2

(
|F |
|E|

+

(
λ(G)

d

)j−1
)
.

If F does not contain any self-loops, then (8.1) can be bounded by d
2|F |

and we can get rid of the 2 in the estimate. Then this bound says that even
after a logarithmic number of steps, the (j + 1)the edge is almost drawn at
random.

9 The final proof

Finally, we can start with the proof of the PCP theorem. We begin with
the observation that gap(1 − 1

|E| , 1)-Max-CGS is NP-hard (over the alphabet

Σ = {0, 1}κ0 for all κ0 ≥ 3). Let G be a given constraint graph. We apply
three procedures to G:

G
↓ Preprocessing (G becomes an expander)

Gprep

↓ Amplification (UNSAT value gets larger, but also Σ)

Gamp

↓ Alphabet reduction (Σ = {0, 1}κ0 again)

Gred

If we do this O(log |E|) times, then we bring the (relative) size of the
gap from 1

|E| to constant and we are done.

9.1 Preprocessing

Throughout this chapter, d0 and h0 will be “global” constants that come
out of the construction of a constant degree d0 expander Xn with constant
edge expansion h0, see Theorem 7.6. The size of the alphabet is {0, 1}κ0
where κ0 is the number of queries made by out assignment tester.

Lemma 9.1. Let G = ((V,E),Σ, c) be a constraint graph. There is a con-
stant γ1 > 0 such that we can construct in polynomial time a (d0 +1)-regular
graph G1 = ((V1, E1),Σ : c1) with size(G1) = O(size(G)) and

γ1 ·UNSAT(G) ≤ UNSAT(G1) ≤ UNSAT(G).

Proof. Let Xn be the expander from Theorem 7.6. G1 is constructed as
follows:

1. Replace each v ∈ V by a copy Yv of Xd(v).

2. For each edge {u, v} ∈ E, insert an edge from Yu to Yv. Do this in
such a way that every node of Yv is incident with exactly one such
extra edge. In this way, the resulting graph will be (d0 + 1)-regular.

53

54 9. The final proof

3. Let Eint be the edges within the copies Yv and Eext be the edges
between two different copies. For all e ∈ Eint, c1(e) is an equality
constraint that is satisfied iff both nodes have the same value (“internal
constraint”). For all e ∈ Eext, c1(e) is the same constraint as the
original edge has (“external constraint”).

We have |V1| ≤
∑

v∈V d(v) ≤ 2|E| and |E1| ≤ |V1|(d0 + 1) ≤ 2|E|(d0 + 1).
Thus size(G1) = O(size(G)).

Next, we show that UNSAT(G1) ≤ UNSAT(G). Chose an assignment
σ : V → Σ with UNSAT(G) = UNSATσ(G) (i.e., an optimal assignment).
We define σ1 : V1 → Σ by σ1(u) = σ(v) iff u belongs to V (Yv), the vertex
set of the copy Yv that replaces v. In this way, all internal constraints
are fulfilled by construction. Every external constraint is fulfilled iff it was
fulfilled under σ in G. Therefore,

UNSAT(G1) ≤ UNSATσ(G1) ≤ UNSAT(G),

where the second equation follows from the fact that |E| ≤ |E1|.
The interesting case is γ · UNSAT(G) ≤ UNSAT(G1). Let σ1 : V1 → Σ

be an optimum assignment. We define σ : V → Σ by a majority vote:
σ(v) is the value a ∈ Σ that is the most common among all values σ1(u)
with u ∈ V (Yv). Ties are broken arbitrarily. Let F ⊆ E be the set of
all unsatisfied constraints under σ and F1 ⊆ E1 the set of all unsatisfied
constraints under σ1. Let S = {u ∈ V (Yv) | v ∈ V, σ1(u) 6= σ(v)} and
Sv = S ∩ V (Yv), i.e., all the looser nodes that voted for a different value for
σ(v). Let α := |F |/|E| = UNSATσ(G). We have

α|E| = |F | ≤ |F1|+ |S|,

since, if a constraint in F is not satisfied, then either the corresponding
external constraint in |F1| is not satisfied or one of the nodes is a looser
node.

Case 1: |F1| ≥ α
2 · |E|. We have

UNSAT(G1) =
|F1|
|E1|

≥ α

2
· |E|
|E1|

=
α

4(d0 + 1)
≥ UNSAT(G)

4(d0 + 1)
.

Case 2: |F1| < α
2 |E|. In this case, we have

α

2
|E|+ |S| > |F1|+ |S| ≥ α|E|.

Thus |S| ≥ α
2 |E|. Consider some v ∈ V and let Sva = {u ∈ Sv | σ1(u) = a}.

We have Sv =
⋃
a6=σ(v) S

v
a . Because we took a majority vote, |Sva | ≤ 1

2 |V (Yv)|
for all a 6= σ1(u). As Yv is an expander,

|E(Sva , S̄
v
a)| ≥ h0 · |Sva |,

9.1. Preprocessing 55

where the complement is taken “locally”, i.e., S̄va = V (Yv) \ Sva . Since we
have equality constraints on all internal edges, all edges in |E(Sva , S̄

v
a)| are

not satisfied. Thus,

|F1| ≥
1

2

∑
v∈V

∑
a6=σ(v)

|E(Sva , S̄
v
a)|

≥
∑
v∈V

1

2
h0 ·

∑
a6=σ(v)

|Sva |

≥ 1

2
h0

∑
v∈V
|Sv|

=
1

2
h0|S|

>
α

4
h0|E|.

Thus

UNSAT(G1) =
|F1|
|E1|

>
αh0

4
· |E|
|E1|

≥ αh0

8(d0 + 1)

≥ h0

8(d0 + 1)
UNSAT(G).

We set γ1 to be the minimum of the constants in the two cases.

Lemma 9.2. Let G be a d-regular constraint graph. We can construct in
polynomial time a constraint graph G2 such that

• G2 is (d+ d0 + 1)-regular,

• every node of G2 has a self loop,

• λ(G2) ≤ d+ d0 + 1− h20
2(d+d0+1) ,

• size(G2) = O(size(G)),

• d
2+2(d0+1) ·UNSAT(G) ≤ UNSAT(G2) ≤ UNSAT(G).

Proof. Assume that G has n nodes. We take the union of G and Xn

(both graphs have the same node set) and attach to each node a self-loop.
The edges from Xn and the self loops get trivial constraints that are always
fulfilled. G2 = ((V,E2),Σ, c2) is clearly d+ d0 + 1-regular.

56 9. The final proof

We have h(G) ≥ h(Xn) ≥ h0. Since G is connected (λ2 < d) and not
bipartite (λn > −d),

λ(G2) ≤ d+ d0 + 1− h2
0

2(d+ d0 + 1)
.

Finally,

|E2| = |E|+ |E(Xn)|+ n ≤ |E|+ (d0 + 1)|V | ≤ d+ 2(d0 + 1)

d
|E|.

Thus the size increase is linear. Furthermore, the UNSAT value can at most
shrink by this factor.

By combining these two lemmas, we get the following result.

Theorem 9.3. There is are constants βprep > 0 and 0 < λ < δ such that for
all constraint graphs G, we can construct in polynomial time a constraint
graph Gprep over the same alphabet with

• Gprep is δ-regular,

• every node in Gprep has a self-loop,

• λ(Gprep) ≤ λ,

• size(Gprep) = O(size(G)),

• βprep ·UNSAT(G) ≤ UNSAT(Gprep) ≤ UNSAT(G).

We set δ = d+ d0 + 1, βprep = γ · d
d+2(d0+1) , and λ = δ − h20

2δ .

9.2 Gap amplification

Definition 9.4. Let G = ((V,E),Σ, c) be a d-regular constraint graph such
that every node has a self loop. Let t ∈ N be odd. The t-fold amplification
product Gt = ((V,Et),Σdt/2 , ct) is defined as follows:

• For every walk W of length t from u to v, there is an edge {u, v} in
Et. If there are several walks between u and v, we introduce several
edges between u and v. But we disregard the directions of the walks,
that is, for every walk W and its reverse, we put only one edge into
Et.

• An assignment σ̂ maps every node to a vector from Σdt/2. We index
the entries with walks of length t/2 starting in v. (There are exactly
dt/2 such walks. Let W be such a walk and let u be the other end node.
σ̂(v)W is called “the opinion of v about u with respect to W”. Since
there might be many walks from v to u, v can have many opinions

9.2. Gap amplification 57

about u. We will usually assume that nodes are not “schizophrenic”,
i.e., that they always have the same opinion about u. In this case, we
will also write σ̂(v)u for the opinion of v about u.

• It remains to define ct. Let e = {u, v} ∈ Et and σ̂ be an assignment.
Let Ge be the subgraph of G induced by Nt/2(u) ∪ Nt/2(v). ct(e) is
satisfied by σ̂ iff all opinions (of u and v) about every x ∈ Ge are
consistent and all constraints in Ge are satisfied. (Since G will be an
expander, if one constraint of G “appears” in many constraints of Gt.)

If t is a constant, Gt is polynomial time computable from G and we have
size(Gt) = O(size(G)). t will be odd in the following, whenever we write t/2
we mean t rounded down. A walk of length t can be decomposed into an
initital walk of length t/2, one middle edge, and another walk of length t/2.

Theorem 9.5. Let λ < d be two constants, Σ an alphabet. There is a
constant βamp solely depending on λ, d, and |Σ| such that for all d-regular
constraint graphs G with self loops at every node and λ(G) ≤ λ:

1. UNSAT(Gt) ≥ βamp ·
√
t ·min{UNSAT(G), 1

2t}

2. UNSAT(G) = 0 ⇒ UNSAT(Gt) = 0.

Proof. We start with showing 2: Let σ be a satisfying assignment for
G. We define σ̂ : V → Σdt/2 by setting σ̂(v)W = σ(u) where W is a walk of
length t/2 starting in v and u is the other end node of W . By construction,
σ̂ fulfills all constraints of Ĝt.

For 1, let σ̂ be an optimum assignment for Gt. We can assume that
there are not any schizophrenic nodes v because otherwise all constraints
involving v are not satisfied and therefore, we cannot increase the UNSAT
value by changing the assignment to v.

We will define an assignment σ with

UNSATσ̂(Gt) ≥ Ω(
√
t) ·min{UNSATσ(G),

1

2t
}.

σ is again defined by a majority vote. σ(v) is the majority of all opinions of
the nodes u that are reachable by a walk of length t/2 from v. (These are
exactly the nodes that have an opinion about v.) If several paths go from v
to u, then each paths contributes one opinion.

We choose an F ⊆ E as large as possible such that all constraints in F
are not satisfied by σ and |F |/|E| ≤ 1/t. Then

min{UNSATσ(G),
1

2t
} ≤ |F |
|E|
≤ 1

t
.

Let Wt denote the set of all walks of length t.

58 9. The final proof

Definition 9.6. W = (v0, e1, v1, . . . , vt) ∈ Wt is “ hit at j” if ej ∈ F and
the opinion of v0 about vj−1 and of vt about vj are equal to σ(vj−1) and
to σ(vj), respectively. (In particular, both nodes have an opinion about the
corresponding node.)

If an edge is hit, then it is not satisfied and it is not satisfied because it
is really not satisfied and not just because σ̂ and σ were inconsistent.

We set I = {j ∈ N | t/2−
√
t+ 1 < j < t/2 +

√
t+ 1}, the set of “middle

indices”. For a walk W , we set

N(W) = |{j ∈ I |W is hit at j}|.

Let eW be the edge in Gt corresponding to W If N(W) > 0, then eW is not
satisfied by σ̂, since ej is not satisfied in G under σ and σ is consistent with
σ̂ on vj and vj−1. In formulas,

Pr[N(W) > 0] ≤ Pr
ê∈Et

[σ̂ does not satisfy ê]

= UNSATσ̂(Gt)

= UNSAT(Gt).

We will show that Ω(
√
t) |F ||E| ≤ Pr[N(W) > 0]. This will finish the proof.

In Lemma 9.8, we show that E[N(W)] ≥ Ω(
√
t) |E||F | and in Lemma 9.7,

E[N(W)2] ≤ O(
√
t) |E||F | . Now the claim follows from Pr[Z > 0] ≥ E[Z]2

E[Z2]
for

any nonnegative random variable Z.

Let

Nj(W) =

{
1 if W is hit in j,

0 otherwise.

Then
∑

j∈I Nj(W) = N(W).

Lemma 9.7. E[N(W)2] ≤ O(
√
t) |E||F | .

Proof. By linearity of expectation,

E[N(W)2] =
∑
i∈I

E[Ni] +
∑

i,j∈I,i 6=j
E[NiNj].

We have ∑
i∈I

E[Ni] = |I| · |E|
|F |

and

E[NiNj] = Pr[NiNj = 1] = Pr[Ni = 1|Nj = 1] Pr[Nj = 1]

= 2 · |F |
|E|
·

(
|F |
|E|

+

(
λ

d

)|j−i|)

9.2. Gap amplification 59

because

Pr[Ni(W) = 1|Nj(W) = 1]

= Pr[a random walk of length |i− j + 1| ends in F | it started in F]

≤ 2

(
|F |
|E|

+

(
λ

d

)|j−i|)

by Lemma 8.3. Therefore,

∑
i,j∈I,i 6=j

E[NiNj] ≤
∑

i,j∈I,i 6=j
2 · |F |
|E|
·

(
|F |
|E|

+

(
λ

d

)|j−i|)

≤ 2|I|2 |F |
2

|E|2
+ 2|I| |F |

|E|
·
|I|∑
i=0

(λ/d)i = O(
√
t)
|F |
|E|

,

because |I| = Θ(
√
t) and |F ||E| ≤

1
t .

Lemma 9.8. For all j ∈ I, PrW∈Wt [Nj(W) = 1] = Ω(|F ||E|).

Proof. Fix j ∈ I. We generate a walk W = (v0, e1, v1, . . . , vt) uniformly
at random by using the method RW’ with parameter j. Then, the edge ej
is chosen uniformly at random. Furthermore, v0 only depends on vj−1 and
vt only depends on vt. Therefore,

PrW∈Wt [Nj = 1] =
|F |
|E|

pq

where p = PrW∈Wt [σ̂(v0)vj−1 = σ(vj−1)] and q = PrW∈Wt [σ̂(vt)vj = σ(vj)].
We are done if we can show that p and q are constant. Since both cases are
symmetric, we will only present a proof for p.

Let Xj−1 be the random variable generated by the following process. We
start in vj−1 and perform a random walk of length j− 1. Let u be the node
that we reach. We output the opinion σ(u)vj−1 of u about vj−1. If u has no
opinion about vj−1 (this can happen, since j can be greater than t/2; but
this will not happen too often) then we output some dummy value not in
Σ. Obviously, p = Pr[Xj−1 = σ(vj−1)].

If j = t/2 + 1, then we reach all the nodes that have an opinion about
vj−1 and vj , respectively. Since σ(vj−1) and σ(vj) are chosen by a majority
vote, p, q ≥ 1

|Σ| in this case.

We will now show that for all j ∈ I, the probability Pr[Xj−1 = σ(vj−1)]
cannot differ by too much from this, in particular, it is Ω(1/|Σ|). The self
loops will play a crucial role here, since they ensure that a random path
with ` edges visit not more than (1− 1/d)` different nodes on the average.

60 9. The final proof

Let B(`, p) be a random variable with binomial distribution with p =
1− 1

d . Then Pr[B(`, p) = k] is the probability that a random walk of length
` in G uses k edges that are not self loops, or, if a node has more than one
self loop, that are not the first self loop of this node. (We order the self
loops in an arbitrary way.)

Let Yi,j−1 be the random variable generated by the following process:
Perform a random walk of length i starting in vj−1 not using the first self
loop of any vertex and output the opinion of the node we reach about vj−1.
Then for a ∈ Σ,

Pr[Xj−1 = a] =

j−1∑
i=0

Pr[B(j − 1, p) = i] Pr[Yi,j−1 = a]

By the Lemma 9.10,

Pr[B(j − 1, p) = i] ≥ e−cd Pr[B(t/2, p) = i]

if |j − 1− t/2| ≤ c
√
t/2. Choose the constant c such that

Pr[B(j − 1, p) ≤ p · t/2− c
√
t/2] + Pr[B(j − 1, p) ≥ p · t/2 + c

√
t/2] ≤ 1

2|Σ|
.

Such a c exists by the fact that B is highly concentrated. (Use Fact 9.9 and
Pr[B(n, p) ≥ k] = Pr[B(n, 1− p) ≤ n− k].)

Assume that a maximizes Pr[Xj−1 = a]. Let j ∈ I. Then

Pr[Xj−1 = a] ≥
p·t/2+c

√
t/2∑

i=p·t/2−c
√
t/2

Pr[B(j − 1, p) = i] Pr[Yi,j−1 = a]

≥ e−cd
p·t/2+c

√
t/2∑

i=p·t/2−c
√
t/2

Pr[B(t/2, p) = i] Pr[Yi,j−1 = a]

≥ e−cd
(

Pr[Xt/2 = a]− 1

2|Σ|

)
≥ e−cd/2 · Pr[Xt/2 = a].

The second inequality follows from Lemma 9.10 below. The third inequality
holds because the sum over all i in the second row would be Pr[Xt/2 = a]
and we dropped indices with a total probability bounded by 1/(2|Σ|). The
last inequality is due to the fact that a maximizes Pr[Xt/2 = a]. Therefore,

p ≥ e−cd/(2|Σ|). q is bounded in the same way.

Let f(k, n, p) be the binomial distribution and F (k, n, p) be its cumula-
tive distribution function.

9.3. Alphabet reduction 61

Fact 9.9. F (k, n, p) ≤ e−2
−(np−k)2

n (by Hoeffding’s inequality).

Let p = 1− 1
d . Let 0 ≤ i ≤

√
n. We have

f(k, n+ i, p) = pk(1− p)n−k
(
n

k

)
· (n+ 1) · · · (n+ i)

(n− k + 1) · · · (n− k + i)
(1− p)i

= f(k, n, p) · (n+ 1) · · · (n+ i)

(n− k + 1) · · · (n− k + i)
(1− p)i.

If k = pn+ j for some j, then

(1− p)i(n+ i)i

((1− p)n+ i+ j)i
≤ (n+ 1) · · · (n+ i)

(n− k + 1) · · · (n− k + i)
(1− p)i ≤ (1− p)ini

((1− p)n+ j)i
.

Assume that 0 ≤ j ≤
√
n. In this case, the right-hand side is ≤ 1. We

bound the lefthand side by

(1− p)i(n+ i)i

((1− p)n+ i+ j)i
≥
(

1− j

(1− p)n+ i+ j

)i
≥
(

1−
√
n

(1− p)n+
√
n

)√n
=

(
1− d√

n

)√n
≥ e−d

If −
√
j ≤ j < 0, then 1 is a lower bound for the lefthand side and ed is a

upper bound for the righthand side.

If
√
n ≤ i < 0, then we can prove the same bounds by exchanging the

roles of n and n+ i

Lemma 9.10. For all −
√
n ≤ i, j ≤

√
n,

e−d ≤ f(k, n, p)

f(k, n+ i, p)
≤ ed

where k = pn+ j and p = 1− 1
d .

If we replace the bounds −c
√
n ≤ i, j ≤ c

√
n for some constant c, then

e−d and ed are replaced by e−cd and ecd.

9.3 Alphabet reduction

In the last section, we increased the UNSAT value of the constraint graph
but also enlarged the alphabet. To apply the construction iteratively, we
need that in the end, the alphabet is again Σ = {0, 1}κ0 . This is achieved
by the procedure in this section.

62 9. The final proof

Lemma 9.11. There is a constant βred such that for all constraint graphs
G = ((V,E), Σ̂, c) we can construct in polynomial time a constraint graph
Gred = ((V ′, E′), {0, 1}3, c′) such that

1. size(Gred) ≤ O(size(G)) where the constant only depends on |Σ̂|,

2. βred ·UNSAT(G) ≤ UNSAT(Gred) ≤ UNSAT(G).

Proof. Let k = |Σ̂|. We replace every edge e = (x, y) by an assignment
tester Ge = ((Ve, Ee), {0, 1}κ0 , ce) (see Theorem ??). The graph Gred is the
union of all these assignment testers. The nodes X that are used to represent
x ∈ V in Ge, are shared by all assignment tester corresponding to an edge
that contains x. The constraints of each edge in Gpre are the constraints of
the Ge. We can assume that each Ge has the same number of edges, say, r.
Thus Gpre has r|E| edges. Note that the functions fx, fy, gx, and gy only
depend on the set X or Y , respectively, hence if e and e′ share the node x,
they use the same function fx and gx, so there is no consistency issue.

Each assignment tester is a constant size graph whose size only depends
on |Σ̂|. This immediately yields the upper bound on the size of Gpre.

For the second statement of theorem, consider an optimal assignment σ
of G. We construct an assignment σ′ for Gred as follows: If σ satisfies the
constraint ce, then, by the properties of assignment testers, we can extend
σ in such a way that all constraints of Ge are satisfied. If σ does not satisfy
ce, then we extend σ in any way. In the worst case, no constraints of Ge are
satisfied. Thus for every constraint satisfied in G, at least r constraints are
satisfied in Gpre. Thus

UNSAT(Gred) ≤ r · |E| ·UNSAT(G)

|E′|
= UNSATσ(G) = UNSAT(G).

For the other inequality, let σ′ be an optimum assignment for Gred. We
construct an assignment σ for G by using the functions gx for every x ∈ V .
Assume that σ does not satisfy e. Then σ′ does not satisfy at least an ε
fraction of the constraints of Ge by the properties of an assignment tester.
Since σ′ is an optimum assignment, ε ·UNSAT(G) ≤ UNSAT(Gpre)

9.4 Putting everything together

If we put together the constructions of the three previous sections, we get
the following result.

Lemma 9.12. There are constants C > 0 and 1 > a > 0 such that for
every constraint graph G over the alphabet Σ = {0, 1}3, we can construct a
constraint graph G′ over the same alphabet in polynomial time such that

1. size(G′) ≤ C · size(G),

9.4. Putting everything together 63

2. If UNSAT(G) = 0, then UNSAT(G′) = 0,

3. UNSAT(G′) ≥ min{2 ·UNSAT(G), a}.

Proof. We start with G, make it an expander, then amplify the gap (the
value t is yet to choose) and finally reduce the alphabet. It is clear that if
we choose t to be a constant, then the first two statements are fulfilled.

It remains to choose t in such a way that the third statement is fulfilled.
We have

UNSAT(G′) ≥ βred · βamp ·
√
t ·min{UNSAT(Gpre),

1

2t
}

≥ βred · βamp ·
√
t ·min{βpre ·UNSAT(G),

1

2t
}

If we now set t = 4
(

1
βpreβampβred

)2
, we get

UNSAT(G′) ≥ min{2 ·UNSAT(G), a}

with a =
βpreβ2

ampβ
2
red

4 .

With this lemma, the proof of the PCP theorem follows easily. We start
with the observation that the decision version of constraint graph satisfac-
tion is NP-complete, i.e., gap(1 − 1/|E|, 1)-Max-CGS is NP-hard. Let G be
an input graph. If we now apply the above lemma log |E| times, we get
an graph G′ that can be computed in time polynomial in size(G) with the
property that

UNSAT(G′) ≥ min{2log |E| · 1

|E|
, a} = a

is constant. Thus we have a reduction from gap(1 − 1/|E|, 1)-Max-CGS to
gap(1−a, 1)-Max-CGS. In particular, the latter problem is also NP-complete.
But this is equivalent to the statement of the PCP theorem.

10 Explicit constructions of expanders

We call a family of (multi)graphs (Gn)n∈N a family of d-regular λ-expanders
if

1. Gn has n nodes

2. Gn is d-regular

3. λ(Gn) ≤ λ

for all n. Here, d and λ are constants.
The family is called explicit if the function

1n → Gn

is polynomial time computable. It is called strongly explicit if

(n, v, i) 7→ the ith neighbour of v in Gn

is polynomial time computable. Here the input and output size is only
O(log n), so the algorithm runs in time only poly(log n). In our case, it is
also possible to return the whole neighbourhood, since d is constant.

Let G be a d-regular graph with adjacency matrix In this chapter, it
will we very convenient to work with the normalized adjacency matrices
Ã = 1

dA. These matrices are also called random walk matrices, since they

describe the transition probabilites of one step of a random walk. λ̃(G)
is the second largest (absolute value of an) eigenvalue of Ã. Obviously,
λ̃(G) = λ(G)/d.

We will now describe three graph transformations. One of them increases
the number of nodes. This will be used to construct larger expanders from
smaller ones. The second one will reduce the degree. This is used to keep
the degree of our family constant. An the last one reduces the second largest
eigenvalue. This is needed to keep λ(G) below λ.

10.1 Matrix products

Let G be a d-regular graph with normalized adjacency matrix Ã. The k-
fold matrix product Gk of G is the graph given by the normalized adjacency
matrix Ãk. This transformation is also called path product, since there is
an edge between u and v in Gk if there is path of length k in G between u
and v.

64

10.2. Tensor products 65

It is obvious that the number of nodes stays the same and the degree
becomes dk.

Lemma 10.1. λ̃(Gk) = λ̃(G)k for all k ≥ 1.

Proof. Let x be an eigenvector of Ã associated with the eigenvalue λ
such that λ = λ̃(G). Then Ãkx = λkx (induction in k). Thus λ̃(Gk) ≥ λk.
It cannot be larger, since otherwise λ̃(G) > λ.

Matrix product

nodes degree λ̃(G)

G n d λ
Gk n dk λk

Given oracle access to the neighbourhoods of G, that is, we may ask
queries “Give me a list of all neighbours of v!”, we can compute the neigh-
bourhood of a node v in Gk in time O(dk log n) by doing a breadth first
search starting in v. From v, we can reach at most dk vertices and the
description size of a node is O(log n).

10.2 Tensor products

Let G be a d-regular graph with n nodes and normalized adjacency matrix
Ã and let G′ be a d′-regular graph with n′ nodes and normalized adjacency
matrix Ã′. The tensor product G⊗G′ is the graph given by the normalized
adjacency matrix Ã⊗ Ã′. Here Ã⊗ Ã′ denotes the Kronecker product of the
two matrices, which is given by

Ã⊗ Ã′ =

 a1,1Ã
′ . . . a1,nÃ

′

...
. . .

...

an,1Ã
′ . . . an,nÃ

′

 ,

where A = (ai,j).
The new graph has nn′ nodes and its degree is dd′.

Lemma 10.2. Let A be a m × m-matrix and B be a n × n-matrix with
eigenvalues λ1, . . . , λm and µ1, . . . , µn. The eigenvalues of A⊗ B are λiµj,
1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proof. Let x be an eigenvector of A associated with the eigenvalue λ.
and y be an eigenvector of B associated with the eigenvalue µ. Let z := x⊗y
be the vector  x1y

...
xny

 .

66 10. Explicit constructions of expanders

where x = (xi). z is an eigenvector of A⊗B associated with λµ:

A⊗B · z =

 a1,1x1By + · · ·+ a1,mxmBy
...

am,1x1By + · · ·+ am,mxmBy


= µ ·

 (a1,1x1 + · · ·+ a1,mxm)y
...

(am,1x1 + · · ·+ am,mxm)y


= λµ ·

 x1y
...

xmy


= λµz.

These are all eigenvalues, since one can show that if x1, . . . , xm and y1, . . . , yn
are bases, then xi ⊗ yj , 1 ≤ i ≤ m, 1 ≤ j ≤ n, form a basis, too.

From the lemma, it follows that λ̃(G ⊗ G′) = max{λ̃(G), λ̃(G′)}, since
1 · λ̃(G′) and λ̃(G) · 1 are eigenvalues of Ã ⊗ Ã′, but the eigenvalue 1 · 1 is
excluded in the definition of λ̃(G⊗G′).

Tensor product

nodes degree λ̃(G)

G n d λ
G′ n′ d′ λ′

G⊗G′ nn′ dd′ max{λ, λ′}

Given oracle access to the neighbourhoods of G and G′, we can compute
the neighbourhood of a node v in G⊗G′ in time O(d2 log max{n, n′}). (This
assume that from the names of the nodes v in G and v′ in G′ we can compute
in linear time a name of the node that corresponds to v ⊗ v′.)

10.3 Replacement product

Let G be a D-regular graph with n nodes and adjacency matrix A and H be
a d-regular graph with D nodes and adjacency matrix B. The replacement
product GrH is defined as follows:

• For every node v of G, we have one copy Hv of H.

• For every edge {u, v} of G, there are d parallel edges between node i
in Hu and node j in Hv where v is the ith neighbour of u and u is the
jth neighbour of v.

10.3. Replacement product 67

We assume that the nodes of H are the number from 1 to D and that the
neighbours of each node of G are ordered. Such an ordering can for instance
be induced by an ordering of the nodes of G.

We can think of GrH of having an inner and an outer structure. The
inner structures are the copies of H and the outer structure is given by
G. For every edge of G, we put d parallel edges into GrH. This ensures
that when we choose a random neighbour of some node v, the probabability
that we stay in Hv is the same as the probability that we go to another
Hu. In other words, with probability 1/2, we perform an inner step and
with probability 1/2, we perform an outer step. The normalized adjacency
matrix of GrH is given by

1

2
Â+

1

2
I ⊗B,

where I is the n× n-identity matrix. The nD × nD-matrix Â is defined as
follows: Think of the rows and columns labeled with pairs (v, j), v is a node
of G and j is a node of H. Then there is a 1 in the position ((u, i), (v, j)) if v
is the ith neighbour of u and u is the jth neighbour of v. Â is a permutation
matrix.

Obviously, GrH has nD nodes and it is 2d-regular.

Excursus: Induced matrix norms

For a norm ‖.‖ on Rn, the induced matrix norm on Rn×n is defined by

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖.

It is a norm that is subadditive and submultiplicative. By definition, it is compatible
with the vector norm, that is,

‖Ax‖ ≤ ‖A‖ · ‖x‖.

It is the “smallest” norm that is compatible with the given vector norm.

For the Euclidian norm ‖.‖2 on Rn, then induced norm is the so-called spectral
norm, the square root of the largest of the absolute values of the eigenvalues of
AHA. If A is symmetric, then this is just the largest of the absolute values of the
eigenvalues of A. In particular,

λ(G) ≤ ‖A‖2.

If A is symmetric and doubly stochastic, then ‖A‖2 ≤ 1.

Lemma 10.3. If λ̃(G) ≤ 1 − ε and λ̃(H) ≤ 1 − δ, then λ̃(GrH) ≤ 1 −
εδ2/24.

68 10. Explicit constructions of expanders

Proof. By Bernoulli’s inequality, it is sufficient to show that λ̃(GrH)3 ≤
1− εδ2/8. Since λ̃(GrH)3 = λ̃((GrH)3), we analyze the threefold matrix
power of GrH. Its normalized adjacency matrix is given by(

1

2
Â+

1

2
I ⊗ B̃

)3

. (10.1)

Â and I ⊗ B̃ are doubly stochastic, so their spectral norm is bounded by 1.
Since the spectral norm is submultiplicative, we can expand (10.1) into

=
1

8

(
sum of seven matrices of spectral norm ≤ 1 + (I ⊗ B̃)Â(I ⊗ B̃)

)
=

7

8
M +

1

8
(I ⊗ B̃)Â(I ⊗ B̃)︸ ︷︷ ︸

=:(∗)

with ‖M‖ ≤ 1. By Exercise 10.1, we can write B̃ = (1 − δ)C + δJ with
‖C‖ ≤ 1. Thus

(∗) = (I ⊗ (1− δ)C + I ⊗ δJ)Â(I ⊗ (1− δ)C + I ⊗ δJ)

= (1− δ2)M ′ + δ2(I ⊗ J)Â(I ⊗ J)

with ‖M ′‖ ≤ 1. A direct calculation shows that

(I ⊗ J)Â(I ⊗ J) = A⊗ J ′

where the entries of J ′ are all equal to 1/D2. Thus, the second largest
eigenvalue of

λ((I ⊗ J)Â(I ⊗ J)) = λ(A⊗ J ′) ≤ λ(Ã)

= λ(A) · ‖J ′‖ = λ(A)/D = λ(Ã).

Hence, (
1

2
Â+

1

2
I ⊗ B̃

)3

= (1− δ2

8
)M ′′ +

δ2

8
(A⊗ J ′)

with ‖M ′′‖ ≤ 1 and

λ

(
1

2
Â+

1

2
I ⊗ B̃

)3

≤ 1− δ2

8
+
δ2

8
(1− ε)

= 1− δ2ε

8
,

because λ is subadditive (i.e. λ(A+B) ≤ λ(A)+λ(B)) and λ(M ′′) ≤ ‖M ′′‖.

The only term in the analysis that we used was the (I ⊗ B̃)Â(I ⊗ B̃)
term. This corresponds to doing an “inner” step in H, then an “outer step”
in G and again an “inner” step in H. The so-called zig-zag product is a
product similar to the replacment product that only allows such steps.

10.4. Explicit construction 69

Exercise 10.1. Let A be the normalized adjacency matrix of a d-regular
λ-expander. Let

J =


1
n . . . 1

n
...

. . .
...

1
n . . . 1

n

 .

Then
A = (1− λ)J + λC

for some matrix C with ‖C‖ ≤ 1.

Replacement product

nodes degree λ̃(G)

G n D 1− ε
H D d 1− δ
GrH nD 2d 1− εδ2/24

Given oracle access to the neighbourhoods of D and H, we can compute
the neighbourhood of a node v in G ⊗ G′ in time O((D + d) log n). (This
assume that the oracle gives us the neighbourhoods in the same order than
the one used when building the replacement product.)

10.4 Explicit construction

We first construct a family of expanders (Gm) such that Gm has cm nodes.
In a second step (Exercise!), we will show that we can get expanders from
Gm of all sizes between cm−1 + 1 and cm. The constants occuring in the
proof are fairly arbitrary, they are just chosen in such a way that the proof
works. We have taken them from the book by Arora and Barak.

For the start, we need the following constant size expanders. Since they
have constant size, we do not need a constructive proof, since we can simply
enumerate all graphs of the particular size and check whether they have the
mentioned properties.

Exercise 10.2. For large enough d, there are

1. a d-regular 0.01-expander with (2d)100 nodes.

2. a 2d-regular (1− 1
50)-expander with (2d)200 nodes

We now construct the graphs Gk inductively:

1. Let H be a d-regular 0.01-expander with (2d)100 nodes.

2. Let G1 be a 2d-regular (1 − 1
50)-expander with (2d)100 nodes and G2

be a 2d-regular (1− 1
50)-expander with (2d)200 nodes.

70 10. Explicit constructions of expanders

3. For k ≥ 3, let
Gk := ((Gb k−1

2
c ⊗Gd k−1

2
e)

50)rH

Theorem 10.4. Every Gk is a 2d-regular (1 − 1
50)-expander with (2d)100k

nodes. Furthermore, the mapping

(bin k, bin i,bin j) 7→ jth neighbour of node i in Gk

is computable in time polynomial in k. (Note that k is logarithmic in the
size of Gk!)

Proof. The proof of the first part is by induction in k. Let nk denote
the number of nodes of Gk.
Induction base: Clear from construction.
Induction step: The number of nodes of Gk is

nb k−1
2
c · nd k−1

2
e · (2d)100 = (2d)100(k−1) · (2d)100 · (2d)100k.

The degree of Gb k−1
2
c and Gd k−1

2
e is 2d by the induction hypothesis.

The degree of their tensor product is (2d)2 and of the 50th matrix power is
(2d)100. Then we take the replacement product with H and get the graph
Gk of degree 2d.

Finally, the second largest eigenvalue of Gb k−1
2
c ⊗ Gd k−1

2
e is ≤ 1 − 1

50 .

Thus,

λ̃((Gb k−1
2
c ⊗Gd k−1

2
e)

50) ≤ (1− 1

50
)50 ≤ 1

e
≤ 1

2

Thus λ̃(Gk) ≤ 1− 1
2 · 0.992/24 ≤ 1− 1

50 .
For the second part note that the definition of Gk gives a recursive

scheme to compute the neighbourhood of a node. The recursion depth is
log k. We have shown how to compute the neighbourhoods of G50, G⊗G′,
and GrH from the neighbourhoods of the given graphs. The total size of
the neighbourhood of a node in Gk is Dlog k = poly(k) for some constant D.

11 UCONN ∈ L

We modify the transition relation of k-tape nondeterministic Turing ma-
chines as follows: A transition is a tuple (p, p′, t1, . . . , tk) where p and p′ are
states and tκ are triples of the form (αβ, d, α′β′). The interpretation is the
following: if d = 1, the head of M stands on α, and β is the symbol to the
right of the head, then M may go to the right and replace the two symbols
by α′ and β′. If d = −1, then the head has to be on β and M goes to the
left. In both cases, the machine changes it state from p to p′. An “ordinary”
Turing machine can simulate such a Turing machine by always first looking
at the symbols to the left and right of the current head position and storing
them in its finite control.

By defining a transition like above, every transition T has a reverse
transition T−1 that undoes what T did. M is now called symmetric if for
every T in the transition relation ∆, T−1 ∈ ∆.

Definition 11.1.

SL = {L | there is a logarithmic space bounded symmetric

Turing machine M such that L = L(M) }

L is a subset of SL. We simply make the transition relation of a deter-
ministic Turing machine M symmetric by adding T−1 to it for every T in it.
Note that the weakly connected components of the configuration graph of
M are directed trees that converge into a unique accepting or rejecting con-
figuration. We cannot reach any other accepting or rejecting configuration
by making edges in the configuration graph bidirectional, so the accepted
language is the same.

In the same way, we can see that UCONN ∈ SL: Just always guess a neigh-
bour of the current node until we reach the target t. The guessing step can
be made reversible and the deterministic steps between the guessing steps
can be made reversible, too. UCONN is also hard for SL under determinis-
tic logarithmic space reductions. The NL-hardness proof CONN works, we
use the fact that the configuration graph of a symmetric Turing machine is
undirected. Finally, if A ∈ SL and B ≤log A, then B ∈ SL.

Less obvious are the facts that

• planarity testing is in SL,

• bipartiteness testing is in SL,

71

72 11. UCONN ∈ L

• a lot of other interesting problems are contained in SL, see the com-
pendium by [AG00].

• SL is closed under complementation [NTS95].

In this chapter, we will show that UCONN ∈ L. This immediately also
yields space efficient algorithms for planarity or bipartiteness testing.

11.1 Connectivity in expanders

Lemma 11.2. Let c < 1 and d ∈ N. The following promise problem can be
decided by a logarithmic space bounded deterministic Turing machine:

Input: a d-regular graph, such that every connected component is a
λ-expander with λ/d ≤ c, nodes s and t.

Output: accept if there is a path between s and t, otherwise reject.

Proof. The Turing machine enumerates all paths of length O(log n)
starting in s. If it sees the node t, it accepts; after enumerating all the
paths without seeing t, it rejects.

SinceG has constant degree, we can enumerate all paths in space O(log n).
Every path is described by a sequence {1, . . . , d}O(logn). Such a sequence
δ0, δ1, . . . is interpreted as “Take the δ0th neighbour of s, then the δ1th
neighbour of this node, . . . ”.

If the machine accepts, then there certainly is a path between s and t.
For the other direction note that, by Assignment 6, Exercise 6.4 a random
walk on G that starts in s converges to the uniform distribution on the
connected component containing s. After O(log n) steps, every node in the
same connected component of s has a positive probability of being reached.
In particular there is some path of length O(log n) to it.

11.2 Converting graphs into expanders

Lemma 11.3. There is a logarithmic space computable transformation that
transforms any graph G = (V,E) into a cubic regular graph G′ = (V ′, E′)
such that V ⊆ V ′ and for any pair of nodes s, t ∈ V , there is a path between
s and t in G iff there is one in G′.

Proof. If a node v in G

1. has degree d > 3, then we replace v by a cycle of length d and connect
every node of the cycle to one of the neighbours of v.

2. has degree d ≤ 3, then we add 3− d self loops.

11.2. Converting graphs into expanders 73

For every node v with degree > 3, we identify one of the new nodes of the
cycle with v. Let the resulting graph be G′. By construction, G′ is cubic
and if there is a path between s and t in G then there is one between in G′

and vice versa.

With a little care, the construction can be done in logarithmic space.
(Recall that the Turing machine has a separate output tape that is write-
only and oneway, so once it decided to output an edge this decision is not
reversible.) We process each node in the order given by the representation
of G. For each node v, we count the number m of its neighbours. If m ≤ 3,
then we just copy the edges containing v to the output tape and output the
additional self loops. If m > 3, then we output the edges {(v, i), (v, i+ 1)},
1 ≤ i < m and {(v,m), (v, 1)}. Then we go through all neighbours of v. If
u is the ith neighbour of v, then we determine which neighbour v of u is,
say the jth, and output the edge {(v, i), (u, j)}. (We only need to do this if
v is processed before u because otherwise, the edge is already output.)

Let d be large enough such that there is a d/2-regular 0.01-expander H
with d50 nodes. (Again, the constants are chosen in such a way that the
proof works; they are fairly arbitrary and we have taken them from the
book by Arora and Barak.) We can make our cubic graph G d50-regular by
adding d50 − 3 self loops per node. Recursively define

G0 := G

Gk := (Gk−1 rH)50.

Lemma 11.4. For all k ≥ 1,

1. Gk has d50k · n nodes,

2. Gk is d50-regular,

3. λ̃(Gk) ≤ 1− εk, where εk = min{ 1
20 ,

1.5k

8d50n3 }.

Proof. The proof is by induction in k. Let nk be the number of nodes of
Gk.

Induction base: G0 has n nodes and degree d50. By by Assignment 6,
Exercise 6.4, λ̃(G0) ≤ 1− 1

8d50n3 ≤ 1− ε0.

Induction step: The replacement product GkrH has nk ·d50 = nk+1 nodes.
Its degree is d. Gk+1 has the same number of nodes and the degree becomes
d50. We have

λ̃(GkrH) ≤ 1− εk
24
· 0.992 ≤ 1− εk

25

and

λ̃(Gk) ≤
(

1− εk
25

)50
≤ e−2εk ≤ 1− 2εk + 2ε2k = 1− 2εk(1− εk).

74 11. UCONN ∈ L

If εk = 1
20 , then λ̃(Gk) ≤ 1− 1

20 . If εk = 1.5k

8d50n3 <
1
20 , then

λ̃(Gk) ≤ 1− 1.5εk = 1− εk+1.

If we set k = O(log n), then Gk is a constant degree expander with
λ̄(Gk) ≤ 19

20 . For such graphs, connectivity can be decided in deterministic
logarithmic space by Lemma 11.2. So we could first make our input graph
cubic, then compute Gk for k = O(log n) and finally use the connectivity
algorithm for expander graphs. Since L is closed under logarithmic space
computable reductions, this would show UCONN ∈ SL.

But there one problem: To compute Gk, we cannot compute G0, then
G1, then G2, and so on, since L is only closed under application of a constant
number of many-one-reductions. Thus we have to compute Gk from G0 in
one step.

Lemma 11.5. The mapping G0 → Gk with k = O(log n) is deterministic
logarithmic space computable.

Proof. Assume that G0 has nodes {1, . . . , n}. Then the nodes of Gk are
from {1, . . . , n} × {1, . . . , d50}k. The description length of a node of Gk is
log n+50 log d ·k = O(log n). We will identify {1, . . . , d50} with {1, . . . , d}50,
since an edge in Gk corresponds to a path of length 50 in Gk−1 rH.

Now given a node v = (i, δ1, . . . , δk) of Gk and j ∈ {1, . . . , d50}, we want
to compute the jth neighbour of v in Gk. We interpret j as a sequence
(j1, . . . , j50) ∈ {1, . . . , d}50.

Input: node v = (i, δ1, . . . , δk) of Gk, index j = (j1, . . . , j50)
Output: the jth neighbour of v in Gk

1. For h = 1, . . . , 50 compute the jh neighbour of the current node in
Gk−1 rH.

So it remains to compute the neighbours in Gk−1 rH.

Input: node v = (i, δ1, . . . , δk) of Gk, index j
Output: the jth neighbour of v in Gk−1 rH

1. If j ≤ d/2, then return (i, δ1, . . . , δk−1, δ
′) where δ′ is the j neighbour

of δk in H. Since H is constant, this can be hard-wired.
(We perform an internal step inside a copy of H.)

2. Otherwise, recursively compute the δkth neighbour of (i, δ1, . . . , δk−1)
in Gk−1.
(We perform an external step between two copies of H.)

Note that we can view (v, δ1, . . . , δk) as a stack and all the recursive calls
operate on the same step. Thus we only have to store one node at a time.

11.2. Converting graphs into expanders 75

Theorem 11.6 (Reingold [Rei08]). UCONN ∈ SL.

Corollary 11.7. L = SL.

Implementation details

In the proof, we always assume that the graph G is connected. If it
is not connected, then we apply the construction to each connected
component. Convince yourself that all the constructions work,
in particular, if the graph is not connected, then all the logspace
algorithms apply the transformation to each connected component
separately.

Bibliography

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchet-
ti-Spaccamela, and M. Protasi. Complexity and Approximation.
Springer, 1999.

[AG00] Carme Alvarez and Raymond Greenlaw. A compendium of prob-
lems complete for symmetric logarithmic space. Comput. Com-
plexity, 9:73–95, 2000.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,
and Mario Szegedy. Proof verification and hardness of approxi-
mation problems. J. ACM, 45(3):501–555, 1998.

[Big93] Norman Biggs. Algebraic graph theory. Cambridge University
Press, second edition, 1993.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-
testing/correction with application to numerical problems. J.
Comput. Syst. Sci, 47:549–595, 1993.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM,
54(3), 2007.

[GLST98] Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca
Trevisan. A tight characterization of NP with 3-query PCPs. In
Proc. 39th Ann. IEEE Symp. on Foundations of Comput. Sci.
(FOCS), pages 8–17, 1998.

[H̊as99] Johan H̊astad. Clique is hard to approximate within n1−ε. Acta
Mathematica, 182:105–142, 1999.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and
their applications. Bull. Amer. Math. Soc., pages 439–561, 2006.

[NTS95] Noam Nisan and Amnon Ta-Shma. Symmetric logspace is closed
under complement. Chicago Journal of Theoretical Computer
Science, 1995.

[Rei08] Omer Reingold. Undirected connectivity is in log-space. J. ACM,
55(4), 2008.

76

BIBLIOGRAPHY 77

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy
waves, the zig-zag graph product and new constant degree ex-
panders and extractors. Annals of Mathematics, 155(1):157–187,
2002.

[Vaz01] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

